ON ANALYTIC FUNCTIONS WITH BOUNDED
CHARACTERISTIC

HANS FRIED!

A function f(re#), regular within the unit circle, is called a function
with bounded characteristic if

2
lim | log* | f(re'¥) | do
r—1 0

is bounded, where logt lf(re"d’)l =max (log|f(re"¢)!, 0). If f(z) is a

function with bounded characteristic, then
lim f(re*) = f(e*)
r—1

exists almost everywhere [1].2
In the first part of this paper we prove the following:

TreorEM L. Let {fu(2)} (n=1, 2, 3, - - -) and f(3) be functions
with bounded characteristics, let

27
log A, = lim f log* | fu(re') | do,
r—1 0

(1) 2r
log 4 = lim f log* | f(re'®) | dg,
r—1 0
and
(2) | f(e'%) = fa(ei#) | <, for & En, and let p, be the measure of E,.
If
(3) lim 7m," = 0,

7n—rw

and for every positive o there exists a positive integer n, such that

4) Ap <m. ™ for n>n,

then the sequence { fa(2)} tends uniformly to f(3) in any closed domain
interior to the unit circle.
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Special cases of this theorem are the following:

A. If the numbers 4, are bounded, we need only the condition (3),
as (4) follows from (3) in this case.

B. If the numbers 4, are bounded, Ey=FE;= - -+ =E,= - - - and
u1>0, we need only the condition limy..m, =0 instead of (3) and (4).
This case was proved by Ostrowski [1].

C. If Egy=E;= .. =E,= -+ . and 41 >0, we can replace (3) and
(4) by the following two conditions: limy.., 7. =0, and for every posi-
tive o there exists a positive integer #, such that 4, <m,™ for n>n,.
This case was proved by Milloux [2] under the less general assump-
tions that the functions f,(z) and f(2) are bounded, and that
Ey=E;= -.-.=E,= - isan arc (¢, 8) of the unit circle on which
the functions f,(2) and f(2) are continuous.

In the second part of this paper we prove the following theorem.

THEOREM II. Let

(5) f(Z) = Z Cra™k
k=1

be a function with bounded characteristic and let

n
©) 2 g>1 (k=1,2---);

Nk
then
Q) > el

K1

converges.

This theorem generalizes a theorem of R. Paley [3], which proved
that if f(2) has an expansion (5) where the n; satisfy (6) and

27
®) lim | | f(re*%)| do
r—1 0

is bounded, then the series (7) converges. From log+| f@| < lf(z)[ it
follows that each function which satisfies (8) is of bounded charac-
teristic. Therefore, Paley’s theorem is a consequence of Theorem II.
We shall show that Theorem II gives a negative answer to the follow-
ing question asked by Bloch [4]: If f(2) is a function with bounded
characteristic, must the derivative of f(2) have the same property?

1. Proof of Theorem I. We put ¢,(2) =f(2) —fa(2) and ¢.(e**)
=f(e"*) —f.(e**). We have
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log* | ¢a(z) | = log* | f(z) — fu(®) | < log+ (| f&) | + | fu(®) |)
< logt | f(3) | + log* | fu(z) | + log 2.

Let {r:} be an increasing sequence of positive numbers with

©)

lim 7, = 1.

k-

By Jensen’s formula we have, for r <ry,

2 T
rE — Gure

log | du(ret®) l + Z log
p=1

ri(re® — a,)

10 i
(10) 1 e (72 - r2) log l Oalrie 0) l
2rJo 1@ — 2rircos (¢ — 6) + 2
where a4, a2, + - -, an are the zeros of ¢,(z) within the circle of radius

% As the second term on the left side of (10) is positive we have

i (rt — #) log | ga(ric”) | d6
11 27 1 a(rei?) | = f ’
( ) T 10g ‘ ¢ (7’6 ) l 0 rk2_ 27’]97’ cos (¢ — 0) + r2

As limp.pn(rreit) =pn(e’*) for ¢EE,, there exists by Egoroff’s

theorem, for every positive 8y, a set E,/ <E, (n=1,2, - - - ) such that
(12) M(En) > pn — 8,

and

(13) :im bu(rie'®) = dn(e™)

uniformly in E,/.

Because of (3) we can assume m,<1 (=1, 2, - - -); hence it fol-
lows from (2) and (13), that
(14) | u(riei®) | < m, + 8 < 1,

for € E,) and for sufficiently large k, where 8, is arbitrarily small.
We denote by E,!’ the complement of E, with respect to (0, 2m).
Then (11) takes the form

st i < [, 288" Lo
" T JE rd— 2r cos (6 — 6) + 7

(ri -_ rz) log l ¢n(rkew) l do
g, 78— 2rir cos (¢ — 6) + »*

_|_
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As the first integral on the right side is positive and the second nega-
tive, we have, because of (1), (9) and (14),

e + ff , log* | éalre®) | do
r

Eq

+ 222 [ tog | utrem| a0
7 + r ’

E,

27 log ‘ bu(rei®) l <
Ty —

fk+f

ry — 7

IIA

log 244,
e — 7
s+ 7

for sufficiently large k. We get, therefore, for limz..7x=1, as 6 and
8; are arbitrarily small,

+

(un — 81) log (ma + 85),

. 147 1—7
27 log | én(rei®) | < log 244, + pn log ma,
1—7 147
or
(15) | $a(rei®) | = (244,) A+nI2m A=y pn(=r)[2x (1tr),

Let B be any closed domain within the unit circle. There exists an
7’ <1, such that the interior of the circle with radius 7’ contains B.
Now we choose

(16) <(= ")2

7 147/
If we put A’=max (4, 1) and 4, =max (4,, 1) we get, for re# B,
by use of (4),

| u(rei®) | = (24") (/) 127 (L=r Yy Gun22) (A=) [ (b )=0 (L) [ (=)

for sufficiently large #.
As, because of (16), 1—7")/(1+r") —a(1+7")/(1 —7’) >0 and since,
by assumption, lim,., m.#*=0, we have proved the theorem.

2. Proof of Theorem II. For the proof of Theorem II we need the
following two theorems, the first due to Hardy and Littlewood [5],
the second to Zygmund [6].

THEOREM A. If f(2) =2 siciz™ and npyy/me=g>1 (k=1,2, - - +),
then the existence of lim,.if(rei®0) =f(e™°) implies the convergence of
2;_ L(CReiR%0,
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THEOREM B. If the trigonometric series

>~ (ax cos nx0 + by sin m.9) (e 4 1/np =z ¢ > 1)

k=1

converges in a set of positive measure, then the series

©

3 (ax + b

k=1
converges.

As f(2) is a function with bounded characteristic
lim f(re*) = f(e*%)
r—1

exists almost everywhere. If we put ¢;=a,—14b; then by Theorem A
the series

> (ar — ibi)(cos i + isinmp) = Y (ax cos mip + by sin nyp)

k=1 k=1

+ iz (ar sin nxp — by cos nip)

k=1

converges almost everywhere. Therefore, by Theorem B, the series

0 o
Sa+bi=2lal
k=1 k=1
converges.
Now we shall show that there exist bounded functions, whose de-
rivatives are functions whose characteristics are not bounded.
The radius of convergence of the power series

foy = = (”"“ =q> 1)

k=1 Nk 23

is equal to 1 and the function f(2) is bounded within the unit circle.
The derivative

ORI

ke=1

is, by Theorem II, a function whose characteristic is not bounded.
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SWARTHMORE COLLEGE

ON THE (C, 1) SUMMABILITY OF CERTAIN
RANDOM SEQUENCES

HERBERT ROBBINS

It is known [1]! that if a sequence {a.} (n=1, 2, - - -) of real
numbers is summable (C, 1) to a value &, and if _a,?/n?< o, then al-
most all the subsequences of {a,,} are summable (C, 1) to a. It will
be shown that this statement continues to hold if “almost all” is re-
placed by “with probability 1” and “subsequences” by the more gen-
eral term “product sequences,” the meaning of which will be defined
in the next paragraph. The only analytic tool used is the strong law
of large numbers [2]: if {y.} is a sequence of independent random
variables with expected values E(y,) =0 and E(y,?) =b.%, for which
> bn2/n? < o, then with probability 1 the sequence {yn} is summable
(C, 1) to the value 0.

DEFINITION. Let {a.} be a sequence of constants and let {x,} be
a sequence of random variables such that the values of each x, are
non-negative integers. For every # let k(x) be the least positive integer
m such that

(1) S mzm
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