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TO ANALYTIC FUNCTIONS 

J. L. WALSH 

Taylor's series, as the simplest expansion in terms of rational func­
tions of an arbitrary analytic function of a complex variable, has 
shown itself extremely useful as a guide to other such expansions. 
Taylor's series itself suggests other expansions and their properties, 
for instance series of polynomials defined by interpolation or best ap­
proximation, and is frequently a special case or a limiting case of 
these expansions. 

The object of this address is to indicate that Taylor's series is also 
useful both as a guide and as a tool in the study of still other general 
expansions of analytic functions, namely where each approximating 
function is assumed merely analytic and bounded in a given region, 
and where the function approximated is assumed merely analytic in 
a closed subregion. We shall establish certain results in detail, and 
later indicate some new unpublished results and some open problems. 

For convenient reference we mention some properties of the Taylor 
development 

(1) ƒ(*) = Go + aiz + a2z
2 + • • • 

of a function f(z) analytic throughout the circle \z\ <R ( > 1 ) but 
analytic throughout no larger concentric circle. If we set 

(2) Sn(z) = a0 + axz + • • • + anz
n
f 

then we have 

(3) limsup | a w | 1 / n = l / £ , 

from which we find 

(4) lim sup [max | ƒ(*) - Sn(z) |, for | z | = r]l'n = r/R, r < R, 
rt-*eo 

(5) lim sup [max | S»(») |, for | z | = r]lln = r/R, r > R. 

Let us now consider the following problem, with relation to this 
same function ƒ(z). Let R0>R be fixed, and let M>0 be chosen; we 
shall later allow M to become infinite. Denote by /M(S) the (or a) 
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function analytic and of modulus not greater than M in the region 
\z\ <i?o, such that 

(6) mM = [max | f(z) — fM(z) |, for | z | = l ] 

is least; thus /M(Z) is a function of modulus not greater than M in 
the region 1*1 <JRO, of best approximation tof(z) on the circle \z\ = 1. 
I t is an easily proved consequence of the theory of normal families of 
functions that a t least one extremal function /M(S) exists. Moreover 
we have ÎUM>0, for otherwise f M (Z) and f(z) would coincide on the 
circle \z\ = 1 and throughout the region \z\ <i?0 , whereas f M (S) is 
analytic throughout that region and f(z) has a singularity on the 
circle \z\ = R<Ro. Obviously MM decreases or remains unchanged as 
M increases. We wish to study the asymptotic relationship between M 
and mjdy and shall proceed by employing the Taylor partial sums 
Sn(z) as a comparison sequence for/M(Z). 

lî RI<R is arbitrary, we have from (5) 

(7) \Sn(z)\ £MlRÏ/Rl for \ z\ = R0, 

where Mi is independent of n and z\ we likewise have from (4) 

(8) | f(z) - Sn(z) | ^ M2/RÏ, for I z I - 1, 

where M2 is independent of n and z. The function Sn(z) is admitted to 
competition in the determination of the extremal function /M(Z) if 
we choose (as we now do) n corresponding to each M so that we have 

(9) M^o/Ri ^ M < MXR^/RT1; 

these inequalities enable us to compare the s e t / M ^ ) , depending on the 
continuous parameter My with the sequence Sn(z). We have by (8) 
and the first of inequalities (9) 

rnM = [max \f(z) - fM(z) |, for | z\ = l ] 

g M2/RÏ ^ MiM/MxRl 

By the second inequality of (9) we have 

(log M - log Mi)/(log Ro - log RJ < n + 1, 

so (10) can be written in the form 

mM ^ M$M exp [— (log M — log Mi) log R0/(log R0 — log Ri)]> 

where Mz is independent of M and nf whence by allowing M to be­
come infinite and then by allowing i?i to approach R: 
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(11) lim sup tnM ^ exp [(-*• log jR)/(log RQ — log R)]. 
M-*oa 

Inequality (11) is one part of a main asymptotic result, for we shall 
now establish the following theorem. 

THEOREM 1. Under the conditions imposed onf(z), we have 

(12) lim supniM °g = exp [(— log 2£)/(log R0 — log R)]. 

We establish the equality sign in (11) by use of Hadamard's three-
circle theorem, that for an analytic function $(2), the function 
log [maxI $(z)\, for \z\ = r ] is a convex function of log r. I t turns out 
tha t the strong inequality sign in (11) would imply the uniform 
convergence of a sequence of the functions f M (Z) throughout a region 
\z\ <r (> i? ) , which is impossible by the definition of JS. Choose for 
definiteness the values M~en, w = l, 2, • • • , and denote the corre­
sponding functions /jif(s) by Fn(z) respectively. Thus we have on the 
circle \z\ =i?o (using the Fatou boundary values on \z\ = i?o, which 
necessarily exist) 

(13) I Fn(z) \£e*t I Fn+l(z) I g e«+\ I Fn(z) - Fn+l(z) | g 2e»*1. 

If we assume the first member of (11) less than the second member, 
we can write for M sufficiently large and for suitably chosen R2 
(R<R2<R0) 

mM °* é exp [(— log JR2)/(log Ro — log R2)], 

whence from (6) for M = en and M = en + 1 we have on the circle | z\ = 1 

(14) J Fn(z) - Fn+l(z) I g 2 exp [ - n log R2)/(log R0 - log R2)]. 

The last inequality of (13), together with (14), yields by the three-
circle theorem (l^r^Ro) 

lim sup [max | Fn(z) — Fn+i(z) |1/w, for | z | = r] 

r - log R2 log Ro - log r log r 1 
<£ exp 1 ; 

Llog Ro - log R2 log Ro log R0J 
this last member is less than unity for every r <R2l hence is less than 
unity for some value of r, R<r<R2; the sequence Fn(z) converges to 
f(z) uniformly for \z\ <r and f(z) is analytic for \z\ < r , which con­
tradicts the definition of R. Theorem 1 is established. 

Suppose now we envisage a set of functions gjif(z), analytic and re-
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spectively of modulus not greater than M in the region \z\ <Ro. We 
assume the functions gM(z) defined for every M. It is natural to study 
the asymptotic behavior of gM(z)t considered to approach ƒ (z) on the 
circle \z\ = 1. We have by the definition of % 

PM = [max I f{z) — gM(z) |, for | z | = l] ^ mMf 

whence by (12): 

THEOREM 2. If f(z) and the functions gM(z) satisfy the conditions 
given, we have 

(15) lim sup MM à exp [(— log 2?)/(log R0 — log jR)]. 
Jlf->CO 

Inequality (15) is our fundamental relation, which holds for the 
arbitrary functions gM(z)f assumed merely analytic and individually 
bounded in the region \z\ <RQ. However, there are numerous sets of 
functions, such as the partial sums of Taylor's series, and various 
sequences of extremal polynomials and more general rational func­
tions for which the equality sign in (15) can be established. 

In both Theorem 1 and Theorem 2 it is in fact not essential to 
allow M to become continuously infinite ; the conclusion is valid if we 
consider a sequence of values of M such that the set of quotients of 
each value to its predecessor is bounded from unity and from infinity. 

Theorems 1 and 2 suggest of themselves a broader problem, namely 
that of a more general geometric situation. Let the closed region S be 
contained in the region R; let the f unction ƒ (z) be analytic on S but 
not throughout R; we study approximation tof(z) on S by functions 
fni(z) respectively analytic and with upper bound not greater than M 
in i?. This broader problem might first be attacked by direct applica­
tion of Theorems 1 and 2 using a conformai map. This method is suffi­
cient in the case that each of the regions S and R is bounded by a 
circle—in every such case the boundaries can be transformed into 
concentric circles, namely the situation of Theorems 1 and 2, by 
means of a linear transformation of the complex variable ; the second 
member of (12) and (15) is to be defined in terms of the largest region 
in which f(z) is analytic, the region bounded by a level curve of the 
harmonic function u(xt y) which takes on constant values on the 
boundary of S and (different) constant values on the boundary of R. 
Also in case S is bounded by a level curve of the Green's function for 
R, a suitable conformai transformation is adequate; the same com­
ment on evaluating the second member of (12) and (15) applies. In 
more general geometric situations this simple method of conformai 
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transformation is not adequate; more powerful tools must be em­
ployed. Howevef, the new situations just treated suggest that the 
secret of treating the most general situation must include the use of a 
harmonic function and its level curves, the harmonic function being 
constant on the boundaries of S and R. 

We return to the situation of Theorem 1. Instead of using in the 
proof of Theorem 1 the partial sums of the Taylor development of 
f(z), we may use the sequence of rational functions rn(z) of respective 
degrees n with poles uniformly distributed on the circle \z\ = R2>R 
(the poles of rn(z) may be taken as the nth roots of i?2w), with rn(z) 
determined by interpolation tof(z) in the (n + l)th roots of unity. The 
convergence properties of the sequence rn(z) are of extremal type, in 
the sense that equation (12) is fulfilled, even as for the partial sums 
of Taylor's series. From these functions rn(z) we obtain not merely 
a new proof of Theorems 1 and 2, but a proof that in character ex­
tends to regions S and R of very general nature, say each bounded by 
a finite number of disjoint Jordan curves. In this general situation the 
analogue of rational functions with points of interpolation and poles 
uniformly distributed on circles is the set of rational functions with 
points of interpolation and poles uniformly distributed with respect to 
a parameter taken as the conjugate of the harmonic function u(x, y), 
where u(x, y) is harmonic in the region R--S, continuous in the corre­
sponding closed region, and takes constant values on the boundary 
of R and different constant values on the boundary of S; the points of 
interpolation can be uniformly distributed on the boundary of 5; by 
use of a suitable conformai map, the boundary of R can be chosen as 
one or more disjoint analytic Jordan curves; the functions u(xt y) 
can be harmonically extended across these curves, and the poles can 
be prescribed on level curves of u(x, y) exterior to R. These approxi­
mating functions were defined and studied in the present writer's 
book1 in the Colloquium Series, and these functions are the only func­
tions known which can be used for the present purpose. The three-
circle theorem likewise is no longer sufficiently powerful for use in the 
new geometric situation, but a generalization again based on har­
monic functions and due to Nevanlinna is adequate. We omit here 
the details, but merely refer to the generalizations of Theorems 1 
and 2 set forth in papers by Walsh2 and Nilson and Walsh.8 

Even in the situation of Theorem 1 itself there are numerous un-

1 Interpolation and approximation by rational functions in the complex domaint 

Amer. Math. Soc. Colloquium Publications, vol. 20, New York, 1935. 
2 Proc. Nat. Acad. Sci. U.S.A. vol. 24 (1938) pp. 477-486. 
8 Trans. Amer. Math. Soc. vol. 55 (1944) pp. 53-67. 
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solved problems.4 Is the extremal function JM{Z) for prescribed M 
unique? How can it be characterized? Does | / M ( ^ ) | take on (or ap­
proach) the value M in an infinity of points of |JS| =i?? Does 
\f(z) —fitfiz) I take on the value MM in an infinity of points of \z\ = 1 ? 
Do /M(Z) and MM depend continuously on M ? What is the relation 
of the entire problem of /M(Z) to the companion problem of a pre­
scribed e = [max I ƒ (z) —0€(s) I, for \z\ = 1 ] > 0 , with 4>€(z) analytic and 
of smallest least upper bound Me in | z | <R? If the function /juKs) 
corresponds to the maximum error w i , and if we choose e = w i , can 
we conclude M€ = M, <i>e(z) E=fM(z) ? If ƒ (z) is required to satisfy certain 
continuity conditions on \z\ =R, does f M (Z) satisfy corresponding 
conditions on \z\ = RQ? What other measures can be used for approxi­
mation of jfjif(s) to ƒ(2) on J JS I ===== 1, and what norm can be used for 
fM(z) other than the least upper bound on \z\ = R0? 

Merely for the sake of simplicity, we place ourselves anew in the 
situation of Theorem 1, where equation (12) holds with % defined by 
(6), with | /MOS)| £M in \z\ <Ro, although f M (Z) need no longer be 
the extremal function. The three-circle theorem as used in the proof 
of Theorem 1 yields further results on the degree of convergence of the 
set of functions f M (Z) : 

limsup [max \f(z) — fM(z) |, for | z\ = r]lf]o*M 

M—>oo 

( 1 6 ) =exp [(logr-logR)/(\ogR0-logR)], 1 ^ r < R, 

lim sup [max | fM(z) |, for | z \ = r]
lllo*M 

M-*«o 

(17) 
= exp [(log r - log #)/(log R0 - log R)]t R^r ^R0. 

In particular the functions f M (Z) converge tof(z) throughout the circle 
\z\ =R, and converge in no region exterior to that circle but contained 
in the circle \z\ =i? 0 . The asymptotic behavior of the set fM(Z) on the 
circle \z\ =r, Kr<R, is the same as for the extremal functions 
analytic and bounded in |JS| <R0 defined by best approximation to 
ƒ(z) on any circle |^| = r 0 ^ r . Equations (16) and (17) are the precise 
analogues of (4) and (5) for Taylor's series, and indeed (4) and (5) are 
included in (16) and (17). Equations (4) and (5) are intimately con­
nected with the properties of partial sums of Taylor's series: over-
convergence, degree of convergence, and zeros, as studied by Porter, 
Jentzsch, Ostrowski, Szegö, Pólya, Carlson, Bourion, and others. A 
general theory of these topics has been recently developed by the 

4 Some partial results here have quite recently been obtained by Professor M. H. 
Heins. 
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present writer, and is as yet unpublished. This theory is based on the 
continued use of harmonic majorants, and applies in the situation of 
Theorem 1 and its generalization to further geometric situations. For 
instance, in the situation of Theorem 1, special subsequences of func­
tions f M (z) may converge uniformly in a region containing an arc of 
the circle \z\ =R; such overconvergence is not a local property on an 
arc of that circle but when it occurs must occur across every arc of 
that circle on which ƒ (z) is analytic. Whenever overconvergence takes 
place for a particular sequence of the functions f M (Z), the first mem­
bers of both (16) for r 7^1 and (17) for r 5̂  R for that sequence are less 
than the respective second members. When overconvergence occurs, 
ƒ(z) can have no isolated singularity on the circle \z\ = i? . Special 
subsequences of the set /M(S) which converge with sufficient rapidity 
must converge throughout the largest region in \z\ <RQ which con­
tains \z\ < 1 and within which ƒ(z) is analytic. Every point of the 
circle \z\ =R is a limit point of the zeros of the entire se t /M(S) , and 
these properties hold whether f M (S) is extremal or not, provided equa­
tion (12) is satisfied. 

We turn to another kind of problem, still for the present in the situ­
ation of Theorem 1. Can Theorem 1 be sharpened if the functions 
ƒ(z) and /jkrOs), the latter not necessarily extremal functions, satisfy 
certain continuity conditions (for instance Lipschitz conditions on the 
function or on some derivative) on \z\ = i? and \z\ —Ro respectively? 
That is to say, Theorem 1 is primarily a relation involving on the one 
hand regions of analyticity of ƒ (z) and of/M(S) and on the other hand 
degree of convergence of /MOS) to ƒ (2). What sharper results exist when 
we consider in addition the behavior of ƒ (z) and /M(S) on the bounda­
ries of their assigned regions of analyticity? A somewhat analogous 
question arises in the study of approximation of arbitrary functions 
by polynomials. If the functions approximated are merely assumed 
analytic in certain regions, a satisfactory theory can be developed 
relating these regions of analyticity to geometric degree of conver­
gence of approximating polynomials. If more delicate measures of 
convergence are used, to construct a comprehensive theory it is es­
sential to bring into account the behavior of the functions approxi­
mated on the boundaries of their regions of analyticity; this theory 
is based on studies in the real domain by S. Bernstein, Jackson, 
Montel, and de la Vallée-Poussin, was developed mainly by Sewell, 
Curtiss, and Walsh, and was recently set forth in a book by Sewell.5 

The theory of approximation by polynomials, although adequate for 

Degree of approximation by polynomials in the complex domain, Princeton, 1942, 
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our present problem in case the region R is bounded by a level curve 
of Green's function for the exterior of S, is not alone sufficient for 
the broader application we have been considering. It would seem to be 
necessary as a preliminary to study the convergence properties on the 
boundaries of regions of the sequences of rational functions used in 
extending the geometric situation of Theorem 1 ; no such study has 
ever been made. Such a study, analogous to the one made for poly­
nomials, is highly desirable, and would have also other applications 
than to the principal theory considered here. Taylor's series again 
serves as a guide and as a model ; partial but apparently typical re­
sults can be obtained readily, which seem to indicate the possibility 
of carrying through these programs to completion. 
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