
A NOTE ON THE RIEMANN ZETA-FUNCTION 

FU TRAING WANG 

Let py —Pv+ijy be the zeros of the Riemann zeta-function f (1/2+2) 
whose real part j3„è0. Then we have the following formula which is 
an improvement on Paley-Wiener's [l , p. 78 j 1 

ƒ, 
' log I f(l/2 + it) | - ft, 

at = 2w / , 
p J 2 

+ ƒ * *R {e-Mog f (1/2 + e*9)} dd + O Ç^f~\ 

In order to prove this formula let p„ (v = 1, 2, • • • , n) be the w zeros 
of f (1/2+2) for which 0 <7„ < T and 0 g/3„ < 1/2. We require the fol­
lowing lemma: 

LEMMA. L02 ÜT 6c /Âc unit semicircle with center s = 0 lying in the right 
half-plane R(z)>0 and let C be the broken line consisting of three seg­
ments L\ (O^x^Ty y=*T), i 2 ( O ^ x g r , y~—T) and Z,8 (* = 7\ 
-TSyST). Then 

1 CT l oS k ( l / 2 + * 0 | , . A f t 

P » ! 2 

( 1 ) , * f l oS f (V2 + *) 1 f log f (1/2 + 2) 

2wiJ K z2 liriJc z2 

This is a form of Carleman's theorem which can be proved by a 
method of proof analogous to that of Littlewood's theorem (Titch-
marsh [3, pp. 130-134]). 

Let T be a contour describing C, K and the corresponding part of 
the imaginary axis, and let p„ be a point interior to T, and log(s — p„) 
be taken as its principal value. We write G as a contour describing T 
in positive direction to the point iyvi then along the segment y—jv, 
0<x<py--r, and describing a small circle with center 3 = p„, radius r, 
then going back along the negative side of this segment to iyvi and 
then along T to the starting point. 

By Cauchy's theorem we get 

ƒ. 
log (3 - p„) , 

dz = 0. 
d z2 
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Hence 
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1 Ç log (a; - p„) Çfiv dx 

2-KÏJV z2 JQ (X + iy?)2 

[April 

where the integral round the small circle with center z=pv, radius r, 
tends to zero as r—^O. This formula is also true for ft = 0. 

Put r ( l /2+*)=0Wn?. i («-Pr) IK. i (*-pO where <f>(z) is regular 
and has no zero in and on T. Then we get 

J_ C log f(l/2 + z) 
2iri* 

2E 
* - l I P » ! 2 

From this the lemma follows. 
Now we have 

co f ' ^ " ' ^ " ^ - - f + f + f . 
On account of 

log f (1/2 + x + iT) - 0(1) for * £ 1 

we have 

JLl Jt (x+iT)* \TJ 
Since (Titchmarsh [2, p. 5]) 

arg f(l/2 + s + iT) - 0(log T) for 0 £ * ^ 1 

and (Titchmarsh [2, p. 59]) 

log | f(l/2 + * + *T) | 

= 4 2 log {(* - /?)* + (r - T)S} + 0(log J), 
2 |>-T|<1 

then 

(4) pogr(i/2 + *-Mr)^= /log^Y 

From (3) and (4) we get 
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Similarly 

Since log f (l/2 + T+iy) = 0(2- r) , we get 

(7) f = 0 ( J 2 - ^ . 

By (1), (2), (5), (6) and (7) we have 

(8) J l ' - 1*1 ' 

2 i J x 3* V r / 

But (Ingham [4, p. 70]) 

The formula follows from (8) and (9). 
Finally, if we make T—> oo then 

/•* log I f (1/2 + «Ol fW2 r 

*/1 /2 •/ o 

gives a necessary and sufficient condition for the truth of the Riemann 
hypothesis. 
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