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1. Introduction. I t is not fully known under what conditions the 
isometry of two square, metric sets, say E2 and F2, implies the isome-
try of E and F, Using the notion of order two self-isometries, this 
paper gives conditions sufficient to imply E isometric to F when E2 

and F2 are finite and are metrized under any one of a fairly extensive 
class of functions. The basic ideas are first applied to non-square sets 
to yield a more general theorem which is then applied to the inverse 
square problem. 

2. Definitions. A set is called metric if to every pair of its elements, 
a and b, there corresponds a real, non-negative number, which is in­
dependent of the order of a and b} zero if and only if a equals 6, and 
which satisfies the triangle law. 

Two metric sets are isometric (written a ssw) if there is a one-to-one 
transformation of one set on the other in which the metric number 
associated with any pair is the same as that associated with the trans­
formed pair. 

A non-identity mapping of a set on itself, which is an isometry, and 
which leaves each element of the set invariant or else interchanges it 
with another, is called a self-isometry of order two. Any subset on 
which the self-isometry is the identity is said to be left pointwise in­
variant. 

THEOREM 1. Assume A^B under a mapping Tf where A and B are 
finite metric sets. Let A and B have self-isometries of order two under 
mappings R and S respectively and let Ai and B\ denote respectively the 
maximum subsets left pointwise invariant. If A\ has no self-isometry of 
order two, and has at least as many elements as Bi, then Ai^Bi and there 
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exists a composition of R, S, T and T~l which maps A isometrically 
on B and carries A\ into B\. 

PROOF. Starting with the set A\ the following sequence of sets out­
lined is obtained by transforming A\ by T, the set obtained by S, 
this set by T~l, and this set by R, and so on repeating cyclically the 
transformations T, S, T~~l, R. 

Column 1 Column 2 

Ax > T(Atà (ha) 

(2, a) ( T-KTÇAO < ST(A0i (1, b) 

(2,6) {RT^STiAi) > TRT-iSTiAÙ} (3, a) 

< STRT-iSTÇAO) (3, b) 

(In, a) C 

(In, b) I > \ (In + 1, a) 

J ( 2 i f + l , ft) 

The notation a t the side is such that set (n, x), x = a or b, is in B if n 
is odd and in A if n is even. From the construction and the nature of R 
and S, the following relations are easily verified: R(2n, a) = (2n, b), 
R(2n, b) = (2n, a), 5(2» + l, a) = (2n + l, b), S(2» + l, b) = (2» + l, a), 
r (2» , 6) = ( 2 » + l , a), T~l(2n+1, b) = (2n+2, a). 

(1) Assume no set in column 2 is the set B\. 
(2) Since all sets in both columns are isometric to A\, isometry be­

ing transitive, and since A\ has as many elements as J5i, (1) implies 
that no set in column 2 is a subset of B\. 

(3) For any n, x = a or b, S(2n + 1, #)5*(2tt + l, #). Since 5 is the 
identity mapping only on B\ and since, from (1) and (2), ( 2 # + l , x) 
is not Bi or a subset of it, 5(2» + 1 , x) = ( 2 n + l , #) would mean that 
(2n + l, x) had a self-isometry of order two. This, together with 
i4i = (2w + l, #), would imply ^4i had a self-isometry of order two, 
contradicting the given conditions. 

(4) For any n, no two sets of column 1 up to and including (2n, a) 
are identical. The proof is by induction. 

(4.1) Statement (4) holds for w = l, since -4i=(2, a) would give 
7X41) = T(2, a) or (1, a) = (1, 6), contradicting (3). 

(4.2) Assume (4) holds for n = k. 
(4.3) Since R is the identity only on Ai and since (2k, a) is not a 

subset of 4 i , being isometric to it, and is not equal to A\, from (4.2), 
then R(2k, a) = (2k, a) would imply that (2kf a) had a self-isometry of 
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order two, and hence that A\ did also. Therefore R(2k, a) 9^ (2k, a), 
that is (2k, b) 5̂  (2k, a). This, in turn, implies (2k, b) y^A\. 

(4.4) For i<k, x = a or b, (2k, b)^(2i, x). From (2k, b) = (2i, x) 
would follow R(2k, b) = R(2i, x), that is (2k, a) = R(2i, x), which for 
i<k would contradict (4.2). 

(4.5) From (4.2), (4.3), and (4.4) no two sets of column 1 up to 
and including (2k, b) are identical. This, with the one-to-oneness of T, 
implies that no two sets of column 2 up to and including (2& + 1, a) 
are identical. 

(4.6) From(3) > (2* + l , 6 ) ^ ( 2 * + l l a ) . 
(4.7) For i<k, x = a or b, (2* + l, b)?*(2i+l, x). For, from 

(2k + l, b) = (2i + l, x) would follow 5 ( 2 * + 1, b)=S(2i + l, x), that 
is (2& + 1, a)=S(2i+l, x), which for i<k would contradict (4.5). 

(4.8) From (4.6) and (4.7) no two sets of column 2 up to and in­
cluding (2& + 1, b) are identical. This, with the one-to-oneness of T~~l, 
implies that no two sets of column 1 up to and including (2(k + l),a) 
are identical, and completes the induction establishing (4). 

(5) Since (4) implies the existence of an unlimited number of dis­
tinct subsets in the finite set A, it is clearly a contradiction reached 
through assuming (1). Therefore (1) is false and Bi must occur in 
column 2 and be isometric to A\. The remainder of the theorem fol­
lows from the fact that the sequence of sets can be started with A 
rather than Ai. 

If A and B are the same set and T is replaced by the identity, 
Theorem 1 reduces to the following result : 

THEOREM 2. Let A be a finite metric set and let Ai and B\ be the maxi­
mum subsets left pointwise invariant under two distinct self-isometries, 
R and S, of order two. If Ai has no self-isometry of order two and has at 
least as many elements as B\, then Ai=B\ and there is a composition of 
R and S which maps A isometrically on itself and carries A \ into B\. 

3. Definitions concerning square sets. Let E be a finite metric set 
with elements x±, #2, • • • , xn and metric p#. By E2 is meant the set 
of couples obtained from the cartesian product of E with itself. 

In E2 the subset of couples (xi, Xi), i—\, 2, • • • , n, is called the 
diagonal set. 

The reflection mapping, R, of E2 on itself is defined by R(xi, Xj) 
= [Xj, Xi). 

If a metric PE2 is defined on the elements of E2 it is called a metric 
of class a if, in addition to making E2 a metric set, it has the following 
properties : 
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(1) For any two points of E2, P\\(xi, Xj), P2:(xk, x{)t ptf(Pi, P2) 
=/(Xi , X2) where Xi==p^(x», xk), X2^pB(xh XI). 

(2) f(Xu X2)=f(X2t Xi). 
(3) There exists a constant M associated with ƒ, such that when­

ever Xx = Xt, then ƒ (Xi, X2) = MXi. 

THEOREM 3. £e^ £ and F be finite metric sets, and let E2 and F2 be 
metrized under the same class a metric. If either the diagonal set of E2 

or that of F2 has no self-isometry of order two, then E2 s F2 implies E^F. 

PROOF. Let R and S denote respectively the reflection mappings 
of E2 and F2 on themselves. From the definition of reflection and from 
property 2 of a class a metric, the mappings R and S establish self-
isometries of order two in which the diagonal sets alone are left point-
wise invariant. The two diagonal sets also have the same number of 
elements because E2^F2. From Theorem 1, then, with E2 and F2 

playing the roles of A and B, and with the diagonal sets as Ai and B\, 
it follows that the diagonal set of E2 is isometric to that of F2. This 
isometry together with property 3 of a class a metric implies E=F. 
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