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1. Introduction. It is not fully known under what conditions the
isometry of two square, metric sets, say E? and F?, implies the isome-
try of E and F. Using the notion of order two self-isometries, this
paper gives conditions sufficient to imply E isometric to F when E?
and F? are finite and are metrized under any one of a fairly extensive
class of functions. The basic ideas are first applied to non-square sets
to yield a more general theorem which is then applied to the inverse
square problem.

2. Definitions. A set is called metric if to every pair of its elements,
a and b, there corresponds a real, non-negative number, which is in-
dependent of the order of @ and b, zero if and only if a equals b, and
which satisfies the triangle law.

Two metric sets are isometric (written “=") if there is a one-to-one
transformation of one set on the other in which the metric number
associated with any pair is the same as that associated with the trans-
formed pair.

A non-identity mapping of a set on itself, which is an isometry, and
which leaves each element of the set invariant or else interchanges it
with another, is called a self-isometry of order two. Any subset on
which the self-isometry is the identity is said to be left pointwise in-
variant.

THEOREM 1. Assume A =B under a mapping T, where A and B are
finite metric sets. Let A and B have self-isometries of order two under
mappings R and S respectively and let A, and B, denote respectively the
maximum subsets left pointwise invariant. If A, has no self-isometry of
order two, and has at least as many elements as By, then A= B, and there

Presented to the Society, November 25, 1944, under the title Some properties of a
certain interchange type of self-isomeiry; received by the editors September 23, 1944,



1945] ISOMETRIES OF SQUARE SETS 961

exists a composition of R, S, T and T which maps A isometrically
on B and carries A, into Bi.

Proor. Starting with the set 4, the following sequence of sets out-
lined is obtained by transforming A4, by T, the set obtained by .S,
this set by T, and this set by R, and so on repeating cyclically the
transformations T, S, T}, R.

Column 1 Column 2

4, — T(Al)} 1, a)

2, a) { T-1ST(4,) ST(y)) (1,0)

(2,8) \RT-ST(4,) —— TRT‘“ST(Al)} 3, a)

«——— STRTST(441)) (3,0)

(2n, a) {

(2m, b) —_ } 2n + 1, a)
@2n + 1, )

The notation at the side is such that set (#, x), x=a or b, isin B if »
is odd and in 4 if # is even. From the construction and the nature of R
and S, the following relations are easily verified: R(2%n, a) = (2#, b),
R(2n, b) =(2n, a), S2n+1, a)=(2n+1, b), S2n+1, b)=(2n+1, a),
T(2n, b)=(2n+1, a), T7*(2n+1, b) =(2n+2, a).

(1) Assume no set in column 2 is the set Bi.

(2) Since all sets in both columns are isometric to 4,, isometry be-
ing transitive, and since A, has as many elements as B;, (1) implies
that no set in column 2 is a subset of Bi.

(3) For any #n, x=a or b, S2n+1, x)#(2n+1, x). Since S is the
identity mapping only on B; and since, from (1) and (2), (2n+1, %)
is not B or a subset of it, S(2n+1, x) = (2n+1, x) would mean that
(2n+1, x) had a self-isometry of order two. This, together with
A:=(2n+1, x), would imply 4, had a self-isometry of order two,
contradicting the given conditions.

(4) For any #, no two sets of column 1 up to and including (27, a)
are identical. The proof is by induction.

(4.1) Statement (4) holds for =1, since 4,=(2, a) would give
T(41)=T(2,a)or (1, a)=(1,b), contradicting (3).

(4.2) Assume (4) holds for n==k.

(4.3) Since R is the identity only on A4, and since (2%, @) is not a
subset of 4, being isometric to it, and is not equal to 41, from (4.2),
then R(2k, a) = (2k, a) would imply that (2%, a) had a self-isometry of
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order two, and hence that 4, did also. Therefore R(2k, a) = (2k, a),
that is (2%, b) % (2k, a). This, in turn, implies (2%, b) = A4,.

(4.4) For i<k, x=a or b, (2k, b)#(2¢, x). From (2%, b) = (2, x)
would follow R(2k, b) =R(21, x), that is (2%, a) =R(24, x), which for
1<k would contradict (4.2).

(4.5) From (4.2), (4.3), and (4.4) no two sets of column 1 up to
and including (2%, b) are identical. This, with the one-to-oneness of T,
implies that no two sets of column 2 up to and including (2k+1, a)
are identical.

(4.6) From (3), (2k+1, b) = (2k+1, a).

(4.7) For i<k, x=a or b, (2k+1, b)>(2¢+1, x). For, from
(2k+1, b) =(2¢4+1, x) would follow S(2k+1, b)=S(2¢+1, x), that
is (2k+1, a) =S5(2¢+1, x), which for <k would contradict (4.5).

(4.8) From (4.6) and (4.7) no two sets of column 2 up to and in-
cluding (2k+1, b) are identical. This, with the one-to-oneness of 71,
implies that no two sets of column 1 up to and including (2(2+1), a)
are identical, and completes the induction establishing (4).

(5) Since (4) implies the existence of an unlimited number of dis-
tinct subsets in the finite set A, it is clearly a contradiction reached
through assuming (1). Therefore (1) is false and By must occur in
column 2 and be isometric to 4;. The remainder of the theorem fol-
lows from the fact that the sequence of sets can be started with 4
rather than 4,.

If A and B are the same set and T is replaced by the identity,
Theorem 1 reduces to the following result:

THEOREM 2. Let A be a finite metric set and let Ay and By be the maxi-
mum subsets left pointwise invariant under two distinct self-isometries,
R and S, of order two. If A, has no self-isometry of order two and has at
least as many elements as By, then A= B and there is a composition of
R and S which maps A isometrically on itself and carries A, into B.

3. Definitions concerning square sets. Let E be a finite metric set
with elements x3, %2, - * +, 2, and metric pg. By E? is meant the set
of couples obtained from the cartesian product of E with itself.

In E? the subset of couples (xi, x:), 2=1, 2, - - -, n, is called the
diagonal set.

The reflection mapping, R, of E? on itself is defined by R(x;, x;)
= (xj, %:).

If a metric pg? is defined on the elements of E? it is called a metric
of class « if, in addition to making E? a metric set, it has the following
properties:
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(1) For any two points of E2?, Py:(xi, x;), P2: (xr, x1), pe*(Py, Pa)
=f(X1, Xz) where X1=pE(x.-, x;,), X2=pE(x,-, xz).

(2) f(X1, Xo) =f(Xa, X1).

(3) There exists a constant M associated with f, such that when-
ever X1=X,, then f(X1, X,) = MX,.

THEOREM 3. Let E and F be finite metric sets, and let E? and F? be
metrized under the same class o metric. If either the diagonal set of E?
or that of F? has no self-isometry of order two, then E?= F? implies E=F.

Proor. Let R and S denote respectively the reflection mappings
of E2and F? on themselves. From the definition of reflection and from
property 2 of a class @ metric, the mappings R and S establish self-
isometries of order two in which the diagonal sets alone are left point-
wise invariant. The two diagonal sets also have the same number of
elements because E2?=F2, From Theorem 1, then, with E? and F?
playing the roles of 4 and B, and with the diagonal sets as 4, and By,
it follows that the diagonal set of E? is isometric to that of F2% This
isometry together with property 3 of a class o metric implies E=F.
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