- 11. S. Straszewicz, Über die Zerschneidung der Ebene durch abgeschlossene Mengen, Fund. Math. vol. 7 (1925) pp. 159-187.
- 12. —, Über eine Verallgemeinerung des Jordan'schen Kurvensatzes, Fund. Math. vol. 4 (1923) pp. 128-135.

THE UNIVERSITY OF TEXAS

ON ISOMETRIES OF SQUARE SETS

PAUL J. KELLY

- 1. Introduction. It is not fully known under what conditions the isometry of two square, metric sets, say E^2 and F^2 , implies the isometry of E and F. Using the notion of order two self-isometries, this paper gives conditions sufficient to imply E isometric to F when E^2 and F^2 are finite and are metrized under any one of a fairly extensive class of functions. The basic ideas are first applied to non-square sets to yield a more general theorem which is then applied to the inverse square problem.
- 2. **Definitions.** A set is called metric if to every pair of its elements, a and b, there corresponds a real, non-negative number, which is independent of the order of a and b, zero if and only if a equals b, and which satisfies the triangle law.

Two metric sets are isometric (written "=") if there is a one-to-one transformation of one set on the other in which the metric number associated with any pair is the same as that associated with the transformed pair.

A non-identity mapping of a set on itself, which is an isometry, and which leaves each element of the set invariant or else interchanges it with another, is called a self-isometry of order two. Any subset on which the self-isometry is the identity is said to be left pointwise invariant.

THEOREM 1. Assume $A \equiv B$ under a mapping T, where A and B are finite metric sets. Let A and B have self-isometries of order two under mappings R and S respectively and let A_1 and B_1 denote respectively the maximum subsets left pointwise invariant. If A_1 has no self-isometry of order two, and has at least as many elements as B_1 , then $A_1 \equiv B_1$ and there

Presented to the Society, November 25, 1944, under the title Some properties of a certain interchange type of self-isometry; received by the editors September 23, 1944.

exists a composition of R, S, T and T^{-1} which maps A isometrically on B and carries A_1 into B_1 .

PROOF. Starting with the set A_1 the following sequence of sets outlined is obtained by transforming A_1 by T, the set obtained by S, this set by T^{-1} , and this set by R, and so on repeating cyclically the transformations T, S, T^{-1} , R.

The notation at the side is such that set (n, x), x = a or b, is in B if n is odd and in A if n is even. From the construction and the nature of R and S, the following relations are easily verified: R(2n, a) = (2n, b), R(2n, b) = (2n, a), S(2n+1, a) = (2n+1, b), S(2n+1, b) = (2n+1, a), T(2n, b) = (2n+1, a), $T^{-1}(2n+1, b) = (2n+2, a)$.

- (1) Assume no set in column 2 is the set B_1 .
- (2) Since all sets in both columns are isometric to A_1 , isometry being transitive, and since A_1 has as many elements as B_1 , (1) implies that no set in column 2 is a subset of B_1 .
- (3) For any n, x=a or b, $S(2n+1, x) \neq (2n+1, x)$. Since S is the identity mapping only on B_1 and since, from (1) and (2), (2n+1, x) is not B_1 or a subset of it, S(2n+1, x) = (2n+1, x) would mean that (2n+1, x) had a self-isometry of order two. This, together with $A_1 \equiv (2n+1, x)$, would imply A_1 had a self-isometry of order two, contradicting the given conditions.
- (4) For any n, no two sets of column 1 up to and including (2n, a) are identical. The proof is by induction.
- (4.1) Statement (4) holds for n=1, since $A_1=(2, a)$ would give $T(A_1)=T(2,a)$ or (1,a)=(1,b), contradicting (3).
 - (4.2) Assume (4) holds for n = k.
- (4.3) Since R is the identity only on A_1 and since (2k, a) is not a subset of A_1 , being isometric to it, and is not equal to A_1 , from (4.2), then R(2k, a) = (2k, a) would imply that (2k, a) had a self-isometry of

order two, and hence that A_1 did also. Therefore $R(2k, a) \neq (2k, a)$, that is $(2k, b) \neq (2k, a)$. This, in turn, implies $(2k, b) \neq A_1$.

- (4.4) For i < k, x = a or b, $(2k, b) \neq (2i, x)$. From (2k, b) = (2i, x) would follow R(2k, b) = R(2i, x), that is (2k, a) = R(2i, x), which for i < k would contradict (4.2).
- (4.5) From (4.2), (4.3), and (4.4) no two sets of column 1 up to and including (2k, b) are identical. This, with the one-to-oneness of T, implies that no two sets of column 2 up to and including (2k+1, a) are identical.
 - (4.6) From (3), $(2k+1, b) \neq (2k+1, a)$.
- (4.7) For i < k, x = a or b, $(2k+1, b) \ne (2i+1, x)$. For, from (2k+1, b) = (2i+1, x) would follow S(2k+1, b) = S(2i+1, x), that is (2k+1, a) = S(2i+1, x), which for i < k would contradict (4.5).
- (4.8) From (4.6) and (4.7) no two sets of column 2 up to and including (2k+1, b) are identical. This, with the one-to-oneness of T^{-1} , implies that no two sets of column 1 up to and including (2(k+1), a) are identical, and completes the induction establishing (4).
- (5) Since (4) implies the existence of an unlimited number of distinct subsets in the finite set A, it is clearly a contradiction reached through assuming (1). Therefore (1) is false and B_1 must occur in column 2 and be isometric to A_1 . The remainder of the theorem follows from the fact that the sequence of sets can be started with A rather than A_1 .

If A and B are the same set and T is replaced by the identity, Theorem 1 reduces to the following result:

THEOREM 2. Let A be a finite metric set and let A_1 and B_1 be the maximum subsets left pointwise invariant under two distinct self-isometries, R and S, of order two. If A_1 has no self-isometry of order two and has at least as many elements as B_1 , then $A_1 \equiv B_1$ and there is a composition of R and S which maps A isometrically on itself and carries A_1 into B_1 .

3. Definitions concerning square sets. Let E be a finite metric set with elements x_1, x_2, \dots, x_n and metric ρ_E . By E^2 is meant the set of couples obtained from the cartesian product of E with itself.

In E^2 the subset of couples (x_i, x_i) , $i=1, 2, \cdots, n$, is called the diagonal set.

The reflection mapping, R, of E^2 on itself is defined by $R(x_i, x_i) = (x_i, x_i)$.

If a metric ρ_{E^2} is defined on the elements of E^2 it is called a metric of class α if, in addition to making E^2 a metric set, it has the following properties:

- (1) For any two points of E^2 , $P_1:(x_i, x_j)$, $P_2:(x_k, x_l)$, $\rho_{E^2}(P_1, P_2)$ = $f(X_1, X_2)$ where $X_1 = \rho_E(x_i, x_k)$, $X_2 = \rho_E(x_j, x_l)$.
 - (2) $f(X_1, X_2) = f(X_2, X_1)$.
- (3) There exists a constant M associated with f, such that whenever $X_1 = X_2$, then $f(X_1, X_2) = MX_1$.

THEOREM 3. Let E and F be finite metric sets, and let E^2 and F^2 be metrized under the same class α metric. If either the diagonal set of E^2 or that of F^2 has no self-isometry of order two, then $E^2 \equiv F^2$ implies $E \equiv F$.

PROOF. Let R and S denote respectively the reflection mappings of E^2 and F^2 on themselves. From the definition of reflection and from property 2 of a class α metric, the mappings R and S establish self-isometries of order two in which the diagonal sets alone are left pointwise invariant. The two diagonal sets also have the same number of elements because $E^2 \equiv F^2$. From Theorem 1, then, with E^2 and F^2 playing the roles of A and B, and with the diagonal sets as A_1 and B_1 , it follows that the diagonal set of E^2 is isometric to that of F^2 . This isometry together with property 3 of a class α metric implies $E \equiv F$.

University of Wisconsin