THE STRONG SUMMABILITY OF DOUBLE FOURIER SERIES
HAI-TSIN HSY

1. Introduction. Corresponding to the well known theorem of
Fejér-Lebesgue, we have for the double Fourier series the following
proposition :

If f log+l f l is Lebesgue integrable on the square (—w<x=Sm,
—7w Sy=Sw), then the Fejér mean am,.(x, v) of f(x, ¥) tends to f(x, y)
almost everywhere as m and n independently increase indefinitely. More-
over, for every increasing function ¢(t) satisfying the conditions

é(?)

0) =0, lim inf =0,
¢(0) H:l_.in tlogt

there is a funciion f(x, y) such that qS(l f\) is integrable and that
Om.n(x, y) does not converge almost everywhere.

The latter half of this theorem shows that the analogue, in double
Fourier series, of the Fejér-Lebesgue theorem is not a trivial exten-
sion of that of a function of a single variable.

The purpose of the present note is to discuss the strong summabil-
ity? of double Fourier series. A double series Y @m. is said to be
strongly summable with the positive index k if there exists a constant
s such that the expression

1 m n

(1.1) mggl&,v—s‘k-

has the double limit zero as m and # increase without limit, where
m n
Smpn = Z Z Tpye
p=0 ya=0

It is easily seen from Hélder’s equality that the summability says
more for larger k.
Suppose now that f(x, y) is integrable in the Lebesgue sense over

Received by the editors May 16, 1945.

1 B, Jessen, J. Marcinkiewicz and A. Zygmund [5]. The first example of a function
f(x, ¥)€EL with Fejér mean divergent everywhere was given by A. Zygmund; see
S. Saks [8]. Numbers in brackets refer to the Bibliography at the end of the paper.

2 A notion first introduced in Fourier series by G. H. Hardy and J. E. Littlewood
[1]. For subsequent researches, see Hardy and Littlewood [2, 3], J. Marcinkiewicz
[6] and A. Zygmund [12].
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the square Q (—m, —m; 7, m) and is doubly periodic with period 27
in each variable. The Fourier series of f(x, y) is

Z Mn[@m,n COS M2 COS MY + bim,s Sin Mm% COS MY
(1 . 2) m,n=0

~+ Cmn COS Mm% Sin 1y + din,n sin mx sin 1y,
where
n = 0;

1/4 for m
>\m,n={1/2 for m=0,#>0 or m>0,%n=0;
0 for m>0,n>0;

and
1
Ay = ——f ff(x, y) cos mx cos nydxdy,
1!'2 Q

and so on.
On writing

4o(u, ) = doy(, ) = fla+u, y+ o)+ fx+u, 3 —0)
+fx—uy+o)+fl@—uy—1) -4,

and

0w 9) = [ ) [ " 6, n) |dedn b 21)

the theorems obtained in this paper are as follows:

TuEOREM 1. If f(x, y) EL?, p>1, then the double Fourier series (1.2)
is strongly summable to s for every positive index k whenever®

(1.3) @iz,’)y(u, v) = o(uv).

TureoreM I1. If f(x, y) EL?, p>1, then the Fourier series of f(x, y)
s strongly summable almost everywhere to f(x, y) for every positive in-
dex k.

The question whether the hypothesis in Theorem II may be re-
placed by f log* l f l €L is unsettled in this note. Corresponding ques-
tions in Fourier series of a single variable have been answered affirma-
tively by Marcinkiewicz [6] and Zygmund [12]. Indeed, the theorem
holds under the weaker hypothesis f& L. We content ourselves with
establishing the following theorem.

3 We use the symbol o(uv) to denote a function of # and v such that limy,v.0 0(uv) /uv
=0.
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THEOREM I1I. If f(x, ¥) log* |f(x, )| EL and om,.(x, y) denotes
the (m, n)th Fejér sum of the Fourier series of f(x, ), then the relation

1 m n
lim —mm——— ouv(®, ¥) — flz, y) |* =
m ,n—> 0 (m+1)(n+1),.§o:,§l - Y f Y
holds true almost everywhere, where k> 0.

2. Lemmas. Before proving our theorems, we prove a number of
lemmas:

Lemma 1. If f(x, y)ELP p>1, then

zoth yotk
lim — f f(x, ¥)dxdy = f(x0, ¥0)
nx—0 Ik

at almost every point (xo, yo).
This theorem is due to Zygmund [11]. Compare also [5] and [9].
Lemma 2. If f(x, y) EL?, p>1, then at almost every point (x, ),

ST w3 9 = st ) e = oh

as h, k—0.

Proor. Let a be a rational number, and E, the set of points (x, ¥)

such that
1 h k »
ﬁf f |flx £ u,y £ 9) — & dudv
0 0

does not tend to |f(x, ) —-a] ? as b, k—0. In virtue of Lemma 1, E, is
of measure zero, and so also is the sum E of all E,. Let (x, y) be not
a point of E and let B8 be a rational number, then, by Minkowski’s
inequality,

{%foh fok | S £ w5 £ 0) = fx, 5) |”dudv}1/p
= {%foh fok [ e £y £0) - ﬁlrdud”}”p

L f " / 18— 5 9) jsauin} "

which tends to Zlf(x, y)—BI as h, k—0. As B—f(x, ), the result
follows.
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LemMA 3. Let f(x, y)EL?, 1 <p=2,1/p+1/9=1, and let the Fourier
series of f(x, v) be given in the complex form :

f(x, y) ~ Z Z Cu, et HEtPY),

M=m—00  Vmx—00

then

en {% S el s [ Tl lrasar ™

This is a double series analogue of the Young-Hausdorff theorem,
and may be proved by the method of M. Riesz* with an obvious
modification.

We also require the following formula of integration by parts:

N du ” o ()Y’ (v)dudv
I,

2.2) = pa(oa, b¥(an, 5) — [ ity B, Bo)du

ay
b2

a2 bs
- p1(aq, VY. (a2, v)dv +f duf P1Yurd,
b a1 b

where

Vo) = VW', piln ) = [ 4o f " p(o, B)de.

This formula is valid if p is integrable on (a3, b1; as, b2), ¥’ is absolutely
continuous on (@i, @2), and ¥’/ is absolutely continuous on (b1, bs).

3. Proof of Theorem I. Without loss of generality, we may assume
that x =0, y=0. So that

1 p7pr~ sin m + 1/2)u sin (n + 1/2)v
Smn = ——f f f(u, ) - - dudy.

w2J sin %/2 sin /2

We have to deduce

(3.1) >0 suw — s|* = o(un)

pe=0 ye=0
from (1.3).
Write

¢ M. Riesz [7], see also A. Zygmund [13].
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P(ss— ) = f ’ff T¢(u, 9 sin (m + 1/2)u sin (n + 1/2)v duds

sin %/2 sin v/2

T ks u u
= f f ¢o(u, v) <sin i cot 5 sin »v + sin px cot Py cos ¥y
0 0

9
—+ cos uu sin vv cot 3— -+ cos uu cos vv) dudy

= II(,“, V) + I2<:U'7 V) + I3<:u', V) + 14(”'1 1')1

and for 0 <u =m, 0<v =,

= Lu(p, v m, n) + Lis(u, v; m, n)
+ Lis(u, v; m, n) + Liu(u, v; m, n),
where =1, 2, 3. For brevity, we also write I;;(u, ») for I;j(u, v;m, n).

Accordingly,
3 4

T (Suy — 8) = 2, 2 Lij(u, ») + La(u, »).

=1 j=1
It follows from Minkowski’s inequality that
m n 1/k 3 4 m = 1/k
#{E e sl s EE{E S w0
p=0 y=0 t=1 j=1 p=0 y=0

3.2

H{EE It}

u=0 v=0

In the first place, by the analogue of the Riemann-Lebesgue theo-
rem® I,(u, ) tends to zero as u, v— «. Hence

m = 1/k
(3.3) {ES 1l = oy
p=0 »=0
Secondly, let us consider the integrals I, Is and I3;. Write
K(u, v) = K(u, v; u, v) = sin uu cot #/2 sin »v cot v/2,
then for 0 <# =<7 and 0<v < there is a constant 4 such that

(3.4) wvmax (| K|, pt| Ko, v | Ko |, | Kuo|) < 4.

We also write

§ W. H. Young [10, p. 138].
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B(u, v) = fo ) f " 8(&, m)didn,

which is o(uv) by (1.3). Then on applying (2.2),

m—l -l
I, ») = f f o, K (u, v; , v)dudv
0 0

= ®(m 1, nH)K(m™, n1)

(3.5 _fo’" ®(u, v ) Ku(u, n')du

— f " ®(m™1, v) Ky(m™?, v)dv

m~1 a1
+f duf ®(u, v) K ,.dv.
0 0

Since 0 <u=<m, 0<v=m, it is easily seen from (3.4) and (3.5) that
(3.6) Ia(u, ») = o(1).

In a similar manner, we can prove Ixn(u, »)=0(1), Isn(u, »)=0(1).
Hence we obtain

m n 1/k
(3.7) {Z 3| Tt ) lk} = ofmmy*  (i=1,23).

p=0 »=0

Thirdly, we consider the integrals Iy, I5 and I3. We have

k3 L4 u v
Ii4(u, v) = f 1 f 1 o(u, v) sin pu cot? sin vy cot? dudy

n

™ %
= f sin uu cot —2~ du

m-1

L /] a v
. f cot — (—f sin vy¢(u, y)dy) dv
a1 2 0y 0

- % 1 e
= f sin uu cot — du(— cot ——f sin vy¢(u, y)dy
2 2nd o

m—1
1 o~ v v,

+ —f csc? —dvf sin vyp(u, v)dy
2J 4 2 0

= I+ I,

say, where I}, is equal to

(3.8)


file:///dflJo
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1
— cot é—-f co t——- ——f f sin px sin vyé(z, y)dxdy) du
n —1

1 1
= cot — cot ——f f sin px sin vyp(x, v)dxdy
2m 2nd 0

1 1 - u w o
— — cot -—f csc? — duf f sin px sin vyp(x, y)dxdy.
2 2nd p 2 o Yo

Let ¢,,»(ce, B) denote the (u, »)th Fourier coefficient of the odd-odd
function x(x, ¥) which is equal to ¢(x, ¥) in the rectangle (0, «; 0, 3)
and to zero elsewhere. Then we may write

1I'2
I14—Zcot—-———cot (———; -———)

w? 1 1
— — cot — csc2 —c,, ,.(u, )du,
8 2nJ pm 2

(3.9)

and Ij; may be written as
1 p,~ u
— f cot — du
2 Jm 2
s L] a u v . .
. f csc? ——(——f f sin px sin vy¢(x, y)dxdy) dv
a1 2 \0u 0 0

T ufdé v
(3.10) = 5 ot— —f csc? > u,v(1, 'v)d‘v)

m—1 ~1

1‘.2
= — —8—cot———f cscz——c”(-——: v)d-v

+ 1 f f csc? il csc? 2 Cu,v(tt, v)dudv.
16J 1 J 1 2 2
1t follows from (3.8), (3.9) and (3.10) that

(ii“u(u, V)])

p=0 y==0

1
4 cot— cot —
= 2m 2n (

D))"
ofod)

1 T m n
+Acot—5—— csc? — (ZE

n m—1 p=0 v==0

E\1/k
) du


file:///duJo
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k\1/k
Cu, ,(—-—; v) ) dv
]
+ 4 cot — cot —f f csc2 — csc? —
2m ~1 2

) ( 2 Zn:l Cu,n (24, ) [")deudv.

p=0 y=0

+Acot—-—f csc? — (ZE

p=0 v=0

Now we assume, without loss of generality, that £>2, k'=k/(k—1)

<p, so that by Lemma 3,
1 T T 1/%
_ R
(w f_,, f_, | x(x, 9) | dxdy)

(ZZlatwal)”
(Ll )

=0 y=0
= o(uv)¥,

I\

since the condition (1.3) is satisfied a fortiori when p is replaced by
the smaller index k’. Therefore

( Xmi Zn: | T14u, ) "‘)Uk =< Amno(mn)~t* + Anf . <1)1W fdi‘

p=0 y=0 -1 \ 7 u?
1/k!
wn [ G) 5
—1

(m,)mc'
+ Af f dudy = o(mn)/*,
w1 J a1 uo?

The integral I»4(u, ») is equal to

k3 u d u T
f cot—<——f dxf o(x, ¥) sin,uxcosvydy)du
m—1 2 \du 0 n—1
? 1 \:, (1 ) ) (1 1)]
=—cot—\ Cupl—s ™) — Cur\ —1» —
4 2m m m n
o e R R O]
- csc? —| cuy(t, ™) — cuu| #, — ) | du,
g . sc? — | Guo(t ) — G -

where the ¢, ,(a, B) (g, =0, 1, 2, - - - ) denote the Fourier coeffi-
cients of the odd-even function x’(x, ¥) which is equal to ¢(x, ¥) in
the rectangle (0, a; 0, 8) and to zero elsewhere. In virtue of Minkow-
ski’s inequality and Lemma 3, it is easily seen that




708 H. T. HSU [October

( i i‘ Toy(p, v) l")uk = o(mn)/*,

p=0 v=0

The integral I3 can be treated in the same manner as I;y. We omit
the details. Collecting the above results, we obtain

m n 1/k
(3.11) (Z S| Lia(u, ») |k> = o(mn)l/* (i=1,2,3).

p=0 »=0

Fourthly, we estimate the integrals Iy, I22 and I3, We have

-1
m ™ u L]
Iia(u, v) = f f ) ¢(u, v) sin uu cot P sin vy cot; dudv
0 n
-1

m u
. f cot — sin uudu
0 2

L4 ? a v
(3.12) . f cot———[——f o(u, y) sin vydy:l dv
s 2 dv 0

-1
m u T 1 1
= f cot——sm,uu{— — cot —y¢, u,—)
0 2 2 2n 7
o I R }d
— csc? — ¢, (%, v)dvp du,
4 J 2
where ¢,(a, ) denotes the vth Fourier coefficient of the odd function

Y (u, B) which is equal to ¢(u, v) for 0 v =8 and to zero for B <v <.
It follows from Young-Hausdorff’s inequality that
Uk
k»dy)

>
e lean)

> e lk)w < (% IR

so that

( il I1o(, ») [k)”k

=0
-1

1 m™1 n 1/%’
(3.13) =4 cot——f “(f | ¢(u, v) lk'dy> du
2nd —n—1

m™1 T 2 v 1/%
+4 f pdu f csc2?< f | 6(u, ¥) [k'dy> dv.
0 n—1 —

Hoélder’s inequality gives
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m1 v 1%
f ( f | ¢(u, y)!"'dy) du
0 —
m1 v 1/k o \1/*
_S_m”"'“‘( f f | ¢(u, y)l"'dydu) =ml/k'—1a(—> .
0 —_— m

Hence (3.13) is reduced to

( i | T1o(u) Ik)llk

y=0

1 ™ 2 \ /¥
< u cot — ml/k’—lo(mn)—llk' + pmt/ k=1 f 20 <_> dv
2n m

-1
= o(n)l/*,

Thus we obtain (Z,’I‘_o :-ol Io(p, v)] F)Uk =g(mn)'*. The integrals Iy,
and I3 may be treated in a similar manner as above. The following
relations are thus established:

m n 1/k
(3.19) S S e A1) = ot G=1,2,9)

p=0 »=0

Finally, we have to consider the integrals Ii3, Is; and I33. The dis-
cussion of I3 is the same as Iz, and the integral Iy has been treated
implicitly in the discussion of I. It remains therefore only to deal
with I33. Regard the integrals

-1

T n 2
Iss(u, v) = f cos ,uuduf ¢(u, v) sin »v cot D) dv
0

m—1
(ﬂ=0;1’2y"°)

as the Fourier coefficients of the function of » which is equal to
n1 ?
f ¢(u, v) sin vy cot—é— dv form?' =u =<,
0

and to zero for —w Su <m™?!, then by Hausdorff’s inequality,

{ il I3, v) l"} "

p=0

(3.15) < lfr

41[' 2 m—1

gA,(fm:(fo"ﬂ | o(u, v)ldv)k’du)”kI.

-1

n v
f sin »v cot 5 o(u, v)dv
0

B O\1/k
du)
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It follows from Hélder’s inequality that

fo”" | ¢, v) | dv < nl/k'—1<fo” ' | 6 l"'dv)”k'

so that

- n~l 1/ k'
ppll k1 <f duf l ¢(u, U) lkldv) = ynl/k’—lo(n—'llk’) == 0(1)-
m—1 0

Hence from (3.15) it results that {3 ™, :‘_ol Isa(u, v) | ¥} 1% = o (mm) V%,
The following relations are thus proved:

m n 1/%
(3.16) {Z | Lisu, v) [k} = omm)t'* (i =1,2,3).

p=0 p=0

Collecting the results (3.2), (3.3), (3.7), (3.11), (3.14), and (3.16)
we obtain (3.1). Theorem I is thus proved.

4. Proof of Theorem II. On account of Theorem I, it suffices to
show that the condition (1.3) is satisfied almost everywhere when
s=f(x, v). Observing

4] ¢on(m, )| S | f@ 4+ u, 3+ 0) — flx, )|
+ e+, 3 =) = f(x )|
+ [ f@—u, y+v) — f(z,9)]
+ [ f@—u 3 =) — f(x 9|,

and employing Minkowski’s inequality, we immediately obtain the
desired result from Lemma 2.

5. Proof of Theorem III. The proof depends upon the following two
lemmas:

LemMA 4. Theorem 111 holds good when f(x, y) is bounded.

Since a bounded function belongs to L?, p>1, the lemma follows
from Theorem II.

LeEMMA 5. Let h(x) be a function such that h log* |h| eL (—m, m).
Let Bn=Bn(x, h) (m=0,1, 2, .- -) be the Fejér sums of the Fourier
series of h(x), and B*(x) =supm le(x)l , then

f ﬂ*(x)dx§.4f | 2| log* | k| dx + B,

where A4 and B are absolute constants.
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This lemma is due to Hardy and Littlewood [4]. See also [13, p.
248].

Before proving the theorem, we extend Lemma 5 to the case of two
variables. Let, for fixed ¥,

8(%, 9) = sup fn(s; [71).

Integrating this equation with respect to y, we obtain

[ st asay

(5.1 .
< 274 f f | 7(x, ) | log* | f(#, 3) | dedy + 2xB.

Writing K, (x) for the Fejér kernel, we have

1 x T
a'm,n(x’ ¥ f) = ';r‘zf f f(u, W)Km(x - u)Kn(y - v)dudv.

It follows that

1 L4
| omal 31 )] S = f_ En(y — 9)g(z, 0)dv.

In virtue of Lebesgue’s theorem, the last expression tends to g(x, ¥)
at almost every point (x, y). Therefore the relation

o*(x, y; f) = limsup | oma(x, 9)| = g(x, 9)

m, n—> 0

holds good almost everywhere. Combining this result with (5.1) we
obtain

f _: f _:"*(x' ¥; Ndxdy

(5.2) oo
< 274 f f | (%, 3)| log* | f(=, ¥)| dxdy + 2xB.

Let X be a positive constant. Substituting Af for f in (5.2), we obtain

f -: f _:"*(x, y; f)dady

(5.3)
m w .B
< 2r4d f_ff-, i f(x, y)l log* If(x, ¥) l dxdy + 21r-;\— .
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Let e be a positive number; we take X so large that 2rB/\ <e/2. Let

f(x, 3) = f'(2, 3) + f"(x, 9)
be such that f’ is bounded;

(5.4) N f_ | 772, 9) | dzdy < e,

® T B
5.5 204 [~ [ 157 )| t0gt [ )] dmdy + 20 =

Applying the inequality (5.3) to the function f’’(x, ¥), we obtain

[ ot i sy <.

by observing (5.5). Combining this relation with (5.4), we see that
the set E(e) of points (x, ¥) such that either lf"(x, y)l >ell? or
o*(x, y; f) > €'/? is of plane measure less than 2¢'/2. Now let o, , and
o/, denote respectively the (u, »)th Fejér sums of the Fourier series
of f/ and f'/, then

(EZlo-11) 2 (S Elebo-s1)"

p=0 »=0 p=0 »=0
A 17 ’7 1k
(Sl -1
p=0 »=0

The first term on the right-hand side is o(mn)Y* almost everywhere,
by Lemma 4. And

= i 124 r’ llk
(ES1e-11)
#e=0 v=0 m n ’ 1/k m n " 1/%
s(ZEIHE) +(ZE1)
< [m + 1)(n + 1) ]E*(x, 95 77) + | 7).
Hence, outside the set E(e),
1 m n 1/k
- . —_— k
fin sup {<m TP DL }
< o*(z, 33 f") + 1] S 242

Since € is arbitrary, the theorem follows.
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