
REPRESENTATION OF FOURIER INTEGRALS AS SUMS. I 

R. J. DUFFIN 

Let 4>(x) be an arbitrary f unction and let the functions F(x) and G(x) 
be defined by the series : 

< < T ) > *w - Mv)+MT) - • • • • 
\ \ 2 / / x \x/ x \x/ x \x/ 

Then G(x) is the Fourier sine transform of F(x) ; that is, 

G(x) «= f—J I sin xtF{t)dt. 

The purpose of this paper is to give restrictions on <j>{x) so that this 
relation is valid in some sense. 

It will be shown here that the restrictions on <[>(x) are closely 
related to restrictions which insure the existence and inversion of 
f™ sin xt<f)(t)dt. Well known and important cases for the inversion of 
the Fourier transform are: 1. 0(/)CZ<2, 2. </>(t)C.Li, and 3. 000 of 
bounded variation. The analogous cases will be considered. 

It is convenient to employ the following notation : sn x = sin (ir/2)xy 

cs x = cos (w/2)x, and an = sin {ir/2)n\ w = 0, 1, 2, • • • . Thus we are 
trying to justify the relation 

E — <t>(—) - f sn xtj^ — *(—W 
i x \x/ J o i n \n / 

We shall call this in what follows the sine transform. (No confusion 
should result from the fact that sn x has a different meaning in the 
theory of elliptic functions.) 

The proofs given here do not assume any previous knowledge of 
Fourier integrals although certain elementary properties of Fourier 
series are employed. 

1. L2 theory. We make the restriction on (j>(x) not only that it 
belong to L2 but also that at least one of the series converges suitably 
to a function in L2. 
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THEOREM la . Let <t>(x)C.L2 (0, oo) and suppose as i\T—»<*> that 
y^2i(an/n)(f){x/n)1 where n runs from 1 to N, converges in mean square 
to a function f (x) in £2(0, 00). Then^(an/x)<}){n/x) converges in mean 
square to a function g(x) in £2(0, 00) and 

d 2 r °° 1 - cs xt 
«<*> = T- - : ƒ « * 

ax ir J 0 t 
almost everywhere. 

PROOF. We shall employ a simple lemma of some interest in itself. 

LEMMA 1. Let <f>(x) C£2(0, 00 ) and suppose for some sequence of con­
stants {bn} that as N—*<x>, ^(bn/n^ix/n), where n runs from 1 to N, 
converges in mean square tof(x)f £2(0, 00). Theny2(fin/x)(/>(n/x) con­
verges in mean square to a function gi(x) in £2(0, 00) and /0°°|/(#)| 2dx 

=/;ift(*)i^-
If tx = nv then 

E — * ( — ) U * - E £ | — 4>(-U(-)dx 
J0 I Nt x \x/1 jv iWiJo *2 \ * / \ # / 

Ni Nl •/ 0 WV \ I> / \ ft / 

•/ 0 I NI n \n/ I 

But as iVi and -ZV2 approach 00 the latter integral approaches zero. 

LEMMA 2. For O g ^ l ; i V = l , 2, 3, • • • , the partial sums 
J^ f cen(l —cos nt)/nt are uniformly bounded. 

Let 
^ 1 — cos nxt 

S(x) = 2Lian > 
1 nt 

so 
N 

S'(x) = 53 «n sin natf. 
1 

But sin 0 - s i n 3 0 + • • • ±sin (2m+ 1)0 = ( ~ l ) w s i n (2m+2)6/2 cos0. 
So S'(x) = ±sin N,xt/2 cos ^ , O g x g l , where N' is an integer. By 
the mean value theorem 5 ( l ) = 5 ( 0 ) + 5 / ( ^ i ) , 0 < * i < l . Since 5(0) = 0 
we have |S(1) | g 1/2 cos 1. 

Let 
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2 r °° 1 - cs xt 2 r °° 1 - cs xt * an / t \ 
Y = — f(t)dt = lim — X — <t>[ — )dt 

2 f w ^ 1 - cs nxt dt 
= lim — I 2-r a» 0(0 

iV->« IT •/ o 1 W £ 

Split this integral into two parts, f0 +fK ; K = 2/7ra. 
The passage to the limit under the integral sign is justified in the 

first integral by Lemma 2. In the second integral the series is known 
to be uniformly bounded as it is the Fourier series of a function of 
bounded variation. Since f^\cj>(t) \ dt/t exists, passage to the limit un­
der the integral sign is justified in the second integral. As is well 
known, 

/0; Am — 1 < x < Am + 1, 
2 - 1 - cs nx 

— 2^ an = \ 1 ; Am + 1 < x < Am + 3, 
7T i n I t 

Vl/2; 2m + 1 = x. 
Let 

h(x) = j l ; |*| < 1 , 
Vl/2; j « | = 1. 

With A(#) so defined it is obvious that the following key lemma is 
valid : 

LEMMA 3. (2/7r)X)an(l —cs nx) /n ~^2anh(n/x) t where n runs from 1 
to oo in both sums. 

Thus, using this relation, we obtain 

dt 

t 
ƒ» oo oo / n\ 

o x W / 
The partial sums of this series are bounded by 1 and are zero near 

the origin so 

F=£; r anh(^)<i>{t) - = è r °^j^)dt^ rg{t)du 
i J o \tx/ t i J o * \ * / J o 

This last step is justified by Lemma 1. Thus g(x)=dY/dx almost 
everywhere. 

THEOREM l b . Under the hypotheses of Theorem l a almost everywhere 

d 2 r °° 1 — cs xt 
/ ( * ) = - - g{t)dt. 

dx ir J o t 
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Let $(#) =(j>(l/x)/x; then, by Lemma 1, $ satisfies Theorem la. But 

and 

±~J±)m±*.(JL) 
in \n / i x \x / 

i # \ x) \ n \n/ 

This observation completes the proof without recourse to Plan-
cherel's theorem. 

2. L\ theory. Besides assuming that </>(x)(ZLi we also assume that 
<j)(x) is "small" near the origin. 

THEOREM 2a. Let (l + l/x)<t>(x)CLi(0, «>); then 

JL an / x\ JL an / n\ 
ƒ(*) = £ - < * > ( - ) ^ * ( * ) - E - * ( - ) 

i n \n / i x \x/ 
exist for almost all x and 

d 2 r -*00 1 — cs xt 
g(x) - — - / ( O * 

ax T J o £ 
almost everywhere. 

Since $(#) and </>(l/x)/xQLi(09 «>) the first part of the theorem 
is a consequence of this lemma: 

LEMMA 4. Letf(x)QLi(l> ^ and let {bn} be a sequence of constants 
such that \bn\ <B. Then^2bnf(nx), where n runs from 1 to <*>, extós 
/or almost all x> 1 and ƒ* | ^\bnf{nx) \ dx/x^Bfî \f(x) | d#. 

Note t h a t E H f { n x ) | a n d ^ i h { n / x ) are monotone in iV so by the 
Lesbegue integral theory of monotone sequences 

J'00 * . , dx A f °°. i <** 

E I / < * * ) ! - - E ƒ ( * * ) -
i i * i J i * 

- E I ƒ ( * ) ! * ( » / * ) -
i Jo x 

ƒi oo oo ^ ^ / • oo 

I ƒ(*) I E - * ( » / * ) - S I \f(x)\dx. 
o i a; J x 

Thus ! £ ] ƒ ( « * ) I 
converges for almost all x. 

Since \22ibnf(nx)\ ^ . B E " \f(nx)\, the proof is complete. 
The lemma implies / 0

X E r | oin(j>{t/n)/n\dt exists so 
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2 

/

,x 1 — cs xt " a» / t \ —-—E-*(-)* 
o t \ n \nj 

2 /•* * 1 - csw*/ /w/ \ 
= lim — I l^oin h ( — J 

JV->«> 7 T « / o i » \ X / 

For each value of t the series is some partial sum of the series 
]Ci°<*n(l— cs nxt)/n and since these partial sums are bounded the 
limit may be taken under the integral sign, giving 

2 r00 " 1 - cs nxt /nt\ dt 

7T «/ o 1 W \ X / t 

For the same reason the limit of this integral as X—> <*> is 

2 C °° A 1 - cs nxt dt r °° " / n \ * 

7 r J o i W / J o I \ xt/ t 

A C00 / n\ dt 

1 J 0 \ W / 

• Ç / . " 7 * ( T ) -

The interchange of limits is justified by the dominated convergence 
of the series. 

THEOREM 2b. Under the hypotheses of Theorem 2a almost everywhere 

d 2 (•-*«> 1 — cs xt 
ƒ(*) - g(t)dt* 

ax ir J o t 
Let $(x)=<t>(l/x)/x; then if xt = l, 

f °° | *(*) | (1 + l/x)dx = f °° | 4>(f) | (1 + 1/0*. 
•J o ^ o 

Thus $(#) satisfies the conditions of Theorem 2a but 

and 

è^(-)-Ê%(-) 
i n \n / i x \n / 

i x \x/ i n \x/ 
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and 

This observation completes the proof. 

3. Bounded variation theory. Here our restrictions on 4>(x) are 
weaker than the restrictions usually stated for the existence and in­
version of the Fourier transform in the corresponding case. The 
Stieltjes integral is found to be the natural tool for the proof in this 
case. The more transcendental Lesbegue integral is not needed at all. 

THEOREM 3a. Let x<j)(x)/l+x be of bounded variation in (0, oo) and 
tend to zero at zero and infinity. Then 

• « - Ç S K T + M T - ) } 
are convergent f or positive x and g(x) =7o** sn xtf(t)dt. 

Without loss of generality we shall suppose that </>(x) is normalized ; 
that is, 0(# + ) + 0 ( # - - ) = 20(a). For any positive a, 0(a) is of bounded 
variation in (a, a>) and x<t>(x) is of bounded variation in (0, a). There­
fore 0(a) = 0i(a) —020x0 where 0i(a) and 02(a) are positive and mono­
tone and tend to 0 a t <*>. Clearly then 

|t*,(-)|si fc(±)+JL fc(i). 
I l X \ X / I X \X/ X \ X / 

Also X(j>(x) =\f/i(x)+\f/2(x) where tZ'i(a) and t^(a) are positive and 
monotone and tend to 0 at 0. Then 

1 °° a / x\ I 1 1 

I i n \ n /1 x x 

This proves the first part of the theorem. To prove the second part, 
first suppose 0(a) constant for 0 ^ a < j 8 Sal/2, then 

s n * £ — <H — ) # - I Z « n S n / ^ ( — )4>{t)dt 
o i n \n/ J o l \ X / 

I ] C an sn #»A f — j dpd<f>(t) 

I 53 an sn ^w/* ( — 1 dpd<i>{t). 

Suppose iV ̂ X//3 and / è/3; then iV> [X/*] so 
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r « " (np\ 2 w$ 1 - cs nt 
I Z an sn pnh [ — ) dp = — 2-r a» 

J 0 1 \ X / 7 T i n 

2 " <Xn 

+ ( l - c s \ ) - Z — 
^ [X/*]+l W 

This series converges uniformly to a continuous uniformly bounded 
function Q\(t) as iV—»oo. Therefore 

f sn*£ — 0(—)dt = - ( Q> 
J o i n \n/ Jo 

(*)<**(*). 

As X—»oo, (?\(/) is uniformly bounded and approaches Zi°°^2 
•(1—cs nt)/irn uniformly, excepting in neighborhoods of the odd in­
teger points. Let 0 (0 =0C(O+0«W where <j>c(t) is continuous and 4>8(t) 
is a step function, constant except at the odd integer points. 

ƒ• 00 /» 00 00 

Qx(t)d<t> = - I Qx(t)d<l>c - £ &(2» ~ l)80.(2n - 1). 
0 «J 0 1 

The limit of this expression as X—> oo is 
oo 4 «0 

E {0c(4n - 3) - 0c(4w - 1)} - — £«*. (2w - 1). 
l 2 i 

But 
00 

£ 8*.(2» - 1) 
1 

00 

= Z {0«(4rc - 1 + ) + 0 8 ( 4 ^ - 1 - ) - $,(4n - 3 + ) - 0*(4T* - 3 - ) } . 
l 

Substituting this latter expression gives finally Zî°<*n0(w). 

LEMMA 5. Suppose \p(x) is a nondecreasing function for 0^x<(3 
^l/2,\p(x)=0forx>t3,and\l/(0 + )=0. Then 

• x s n / * 

0 * 1 \ W / I 

wAere -4 is independent of X awd /3. 

Let N be such that for a given X 

• x 

/

> x s n / " / * \ 1 

— E «»*( — )<» S i K 0 - ) 
0 f JV+l \ W / I 
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Now 

J
, x s n J * / / \ /•* * /tn\dt 

— - Z ^ ( — )^= iK*)2>«sn *»*( — ) — 
o t i \ r a / J 0 i \ X / / 

rf* * (tn\dt 
= I K E - ) 2 > » s n * n * ( — ) — • 

The second law of the mean defines 0. If iVgX//3 then 

f3 * / * » \ d* /•* * A 
I 2-/ <*» s n *»* I — ) — = I z^oLnSntn — 

J o I \ \ / t J o ï * 

-*ƒ. 
0 sniV7* dt 

o 2 cs / / 

= ± — — f snN't 
U6 

1 r' dt 
sn N't — 

2cs joJ 0 2 / 
This last expression is bounded independently of N, X, and (3. If 
N>\//3 then a similar evaluation gives 

/

'* sn M'/ * r x sin/ ^ r 

T - 7 T + — ^ D «- M = [\/fi]. 
n 2 C S f / •/ o t jif-n 

2 CS £ / •/ o ^ M+l 

This expression is also bounded independently of N, X,-and /3. The 
same considerations apply to the integral f0 and the lemma is proved. 

We are now able to handle the general case. Define <t>i(x)+(j)e(x) 
=cj>(x) where <j)i(x)=0 for x<(3 and <t>e(x)=0 for x>(3. Then xcj>e(x) 
=ipi(x) —faix) where faix) and faix) satisfy the conditions of Lemma 
5. 

Let /3 satisfy Afafflge, Afa^Se, and 0 < / ? g l / 2 . There is a X0 

such that for X ^Xo 

ƒ• x °° a / t \ °° 

o l ^ \ » / l 

Therefore by Lemma 5 
I rx ,A <xn / / \ * 

I s n / 2 ^ — * ( — ) * ~ Z)«n0(») 
I J o i n \n / i 

< €. 

<3€. 

The observation that 0(c/) for c > 0 satisfies the conditions of the theo­
rem completes the proof. 

THEOREM 3b. If <j>(x) satisfies the conditions of Theorem 3a then 
f(x)=f^Q°snxtg(t)dL 
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Let <£(#) =(J)(l/x)/x. Then x$(x)/l+x=<l>(l/x)/l+x, so clearly 
<£(x) satisfies the conditions of Theorem 3a which implies Theorem 3b 
for <£(#). 

4. Remarks. I t will be noted that the proofs for the three cases are 
independent; however, the methods of proof are similar. The three 
cases are given in the apparent order of increasing difficulty of proof. 

If x<j>(x) s=<£(l/#) then fix) ^g(x) a n d we arrive at a representation 
of self-reciprocal functions as sums. 

While much has been written on self-reciprocal functions, not so 
much attention has been given to function spaces or classes which are 
self-reciprocal as a whole. The notable exception to this statement is, 
of course, the space Z2. Note then, that the functions ƒ(#) and g(x) 
defined by Theorem 2a belong to the same linear function space. 
Again the functions f(x) and g(x) of Theorem 3a belong to another 
linear function space. 

The theorems here show that under quite general conditions two 
operations of different form give rise to the same functional trans­
formation. I t is natural then to at tempt to extend the range of the 
transformation by using either operation alone where both are not 
applicable. For example, if 4>(x) is different from zero at only one 
point the series for f(x) and g(x) are, of course, convergent and g(x) 
may be defined as the "Fourier transform" of ƒ(#). However since 
f(x) and g(x) are zero except in a set of measure zero the ordinary 
integral definition of the Fourier transform is silent since a set of 
measure zero is disregarded in integration. 

The following examples of the theory are of some interest. If 
<t>(x) = l/(x+l) then 

ƒ(*) = g(x) = V ( * + 1) - l / ( * + 3) + l / ( * + 5) ; 

clearly g(x)=fl(P/(l+t*))dt. 
Again if </>(#) = a r s , 0<s<lf then f(x) =x~8L(l — s) and g(x) 

= ^~1L(5). Here L(s) = 1 - 3 - * + 5 - * - • • • . Evaluation of the in­
tegral f " sn xtf(t)dt gives the well known identity, L(s) = (ir/2)8 

•cos (sw/2)T(l-s)L(l-s). 
The second part of this paper treats other conditions on <t>(x) and 

also the direct representation of the sine transform as a double sum 

1 1 nx \mx/ 

Here jun is the well known Möbius symbol. 
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