
GROUPS WITH ISOMORPHIC PROPER SUBGROUPS 

ROSS A. BEAUMONT 

1. Introduction. Since isomorphic groups have orders which are the 
same cardinal number, no finite group has an isomorphic proper sub­
group. Moreover if there exists an isomorphism / i of a group G such 
that Gfl is a proper subgroup of G, then f\ induces an isomorphism 
ƒ2 of Gfl upon a proper subgroup {Gfl)fi = Gflf2 of GfK An infinite chain 
of isomorphic subgroups is generated such that 

G> Gh> G^h > . . . > GA/2 •••/«> . . . > 1. 

Thus any group G with an isomorphic proper subgroup does not 
satisfy the descending chain condition. Therefore a survey of groups 
with isomorphic proper subgroups is concerned only with infinite 
groups which do not satisfy the descending chain condition. Among 
these groups, it is obvious that infinite cyclic groups have isomorphic 
proper subgroups. 

In a recent paper1 Baer has given a criterion for groups which do 
not have isomorphic proper subgroups. This criterion has not been 
used in the present note since the structure of the groups considered 
allows simpler proofs. Because of its interest in this problem, how­
ever, it is repeated here. 

CRITERION. The group G does not have an isomorphic proper subgroup 
if there exists a well ordered ascending chain of subgroups N(v) of G with 
the following properties. 

(i) N(v)f g* N(v) for every isomorphism f of G into itself. 
(ii) N(0) = 1 and N(t) = G for some ordinal t. 
(iii) N(v+1)/N(v) does not have an isomorphic proper subgroup. 
(iv) If v is a limit ordinal, then every element of N(v) is contained in 

some N{u) for u<v. 

We shall call a group G completely reducible if it is the direct prod­
uct of groups of rank 1. The theorems of this note give a complete 
survey of those completely reducible groups which have isomorphic 
proper subgroups. 

DEFINITION 1. A group G is an I-group if there exists a proper sub-
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group H of G such that G and H are isomorphic. 

LEMMA 1. If a group G has a direct factor S which is an I-group, 
then G is an I-group. 

PROOF. G = SXT for some subgroup T of G and there exists a 
proper subgroup S' of S such that S and S' are isomorphic. The 
product group H=S'T = S'XT is a proper subgroup of G and is iso­
morphic to G since the corresponding direct factors S and Sf, T and T, 
of G and H are isomorphic. Hence G is an /-group. 

LEMMA 2. An infinite direct power group, that is, a group G which 
is the direct product of infinitely many groups which are isomorphic to 
each other, is an I-group. 

PROOF. There is a (1-1) correspondence between the direct factors 
of G and the direct factors of any proper subgroup H which is the 
direct product of almost all of the direct factors of G, and the corre­
sponding direct factors are isomorphic. 

2. Abelian groups all of whose elements are of finite order. The fol­
lowing result proves that the discussion of abelian groups all of whose 
elements are of finite order may be limited to primary abelian groups 
without loss in generality. 

LEMMA 3. If A is an abelian group such that all the elements of A are 
of finite order, then A is an I-group if, and only if, one of the primary 
components A (p) of A is an I-group. 

PROOF. A =YlqA(q) where the A{q) are primary abelian groups. If 
A (p) is an /-group for some p, it follows from Lemma 1 that A te an 
J-group. Conversely, if A is an I-group, then there exists a proper 
subgroup A ' of A such that A and A ' are isomorphic. Since the orders 
of elements are preserved by isomorphism, the isomorphism of A on 
A1 induces an isomorphism of A(q) on A'(q) for all q, where A'(q) 
is the primary g-component of A1. Now A'(q)£A(q) for all q since 
A' <A, and it follows from A'==[[qA'(q) that for some p, A'(p) 
<A(p), for otherwise A =*A'. Thus A(p) is an /-group. 

DEFINITION 2. A group G is said to be of finite rank r(G) if there 
exists an integer r(G) with the property that r(G) is the smallest number 
such that every finite subset of elements of G which does not consist of the 
unity element alone is contained in a subgroup of G which is generated 
by r(G) elements. The rank of the unit group {1} is defined to be 0. If 
no such integer exists, then G is said to be of infinite rank and we write 
r(G)= » . 
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It is known2 that the only primary abelian groups of rank 1 are 
cyclic groups and groups of type p™. G is a group of type p™ if G is 
generated by an infinite sequence a(i) of elements where a(0) is of 
order p and a(i+l)p = a(i) for every i. 

THEOREM 1. If A is a primary abelian group of finite rank r, then A 
is not an I-group. 

PROOF. It follows from the hypothesis and known results3 that A 
is the direct product of groups of rank 1 except in the trivial case 
where r = 0 and A = { l} . Assume that A is an JT^group. Denote by 
A (pk) the subgroup of A consisting of all those elements of A whose 
orders divide pk. The definition of a group of type p™ implies that 
A(pk) is a finite group. The isomorphism of A on a proper subgroup 
A1 induces an isomorphism of A(pk) on a subgroup A'(pk) of A'. 
Since orders are preserved and since A ' <A, Af(pk) SA (pk). Since no 
finite group is an /-group, A'(pk) = A(pk)> If a is an element of A, a is 
contained in A(p3') for some integer j . By the above A{pi)^Af{pi) 
<Af so that a is contained in A'. Thus ASA' which contradicts 
A' <A and the assumption that A is an /-group. 

REMARK. Note that the subgroups A(p*),A(pl)} • • • ,A(pk), • • • 
form an ascending chain of subgroups of A which have the properties 
of Baer's criterion. 

THEOREM 2. If A is a primary abelian group of infinite rank and if A 
is the direct product of groups of rank 1, then A is an I-group. 

PROOF. Case I. The orders of the elements of A are bounded. 
A is the direct product of infinitely many cyclic groups of order 

dividing pk for some integer k. In this direct factorization there must 
be infinitely many cyclic groups of order pl for some i where k 1jzi>0. 
The direct product of these groups is an infinite direct power group, 
and hence by Lemmas 2 and 1,-4 is an /-group. 

Case II. The orders of the elements of A are not bounded. 
If there are infinitely many direct factors which are groups of type 

£°°, then the direct product of these groups is an infinite direct power 
group, and A is an /-group as in Case I. 

If there are only a finite number of direct factors of type £°°, then 
since A is of infinite rank, there are infinitely many cyclic groups in 
the direct factorization. If there are infinitely many cyclic direct fac­
tors of order p{ for some integer i1 then the proof that A is an /-group 

2 H. Prtifer, Untersuchungen Uber die Zerlegbarkeit der abzahlbaren primaten Abel-
schen Gruppen, Math. Zeit. vol. 17 (1923) pp. 35-61. 

8 H. Prüfer, ibid. 
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is that of Case I. The alternative is that there be only a finite number 
of cyclic direct factors of A of order pi for all if so that in the direct 
factorization of A there are cyclic groups of arbitrarily high order. 
(Otherwise, A would be of finite rank.) Then 

A = IlGi(oo) X IlGiijù X liGi(h) X • • • X n ^ O ' » ) X • • • 
t = l 1=1 iwml i -»l 

where Gi(oo) — {l} î G<(oo), *V1, is of type £°°; Gt(j*>) is cyclic of 
order qk = phf andjx<J2< • • • <jfc< • • • . Let 

n ni-~l n2—l 

4' - riGtfoo) x n^o'i) x (G^O'2))^X n ^ y o 
X (COV))*'* X • • • 

where if n^ —1 = 0, 
nk-l 

I I <?<(ƒ*) 
* - i 

is replaced by {1}. 
By construction, A' is a proper subgroup of A and there is a (1-1) 

correspondence between the direct factors of A and those of A'. Since 
these corresponding direct factors are isomorphic, A and A ' are iso­
morphic and A is an /-group. 

3. Abelian groups all of whose elements are of infinite order. In 
this section, the abelian groups considered will be written additively 

THEOREM 3. If G is an abelian group such that all the elements of G 
except the identity are of infinite order, and if G does not admit the field 
of rational numbers, R, as a field of operators, then G is an I-group. 

PROOF. If /3G = G for every integer JST^O, then for every integer a 
and every g in G, ag — fig' for some g' in G. Thus the equation ag—fix 
has a solution g' in G for every pair of integers a and jS^O and for 
every g in G. This is just the statement4 that G admits R, which con­
tradicts the hypothesis. Hence there exists an integer JST^O such that 
jSG is a proper subgroup of G. Moreover, the homomorphism g—>/3g 
is an isomorphism of G on jSG, for if j3g=|8/, j3(g — /) = 0; and since 
JST^O, this implies that g—f has finite order. By the hypothesis on G, 
g ~ / = 0 and g=/ . 

4 If G admits R, the equation has a unique solution, but the existence of a solution 
implies its uniqueness. For a discussion of the properties of rational numbers as opera­
tors of the abelian group, see R. Baer, Abelian groups without elements of finite order, 
Duke Math. J. vol. 3 (1937) p. 70. 
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COROLLARY. Every proper subgroup, G5*0, of the additive group of 
all rational numbers, R, is an I-group. 

PROOF. Assume that G admits R as a field of operators. Let s/t be 
an element of G where s and t are nonzero integers. Then r(s/t)=g in G 
for every r in R, and hence (t/s)g is in G. But (t/s)g = (t/s) [r(s/t) ] = r, 
so that r is in G for every r in R. This contradicts G<R and with 
Theorem 3 completes the proof of the corollary. 

THEOREM 4. If G admits R as a field of operators, then G is an 
I-group if, and only if, G is infinite-dimensional over R. 

PROOF. If G is infinite-dimensional over the field R, G possesses an 
infinite basis,6 B, with respect to R. Let G' be the subgroup of G with 
basis B', where Bf contains almost all of the elements of B. The (1-1) 
correspondence between B and Bf may be extended to an isomor­
phism of G upon its proper subgroup G' in the usual way. 

Conversely, if G is an I-group which admits R, then G contains an 
isomorphic proper subgroup G' which admits R. For if gf is in G' 
and 5 and t^O are integers, there exists an element h oi G such that 
sg = th, where g is the correspondent of g' under the isomorphism of G 
upon G'. We have 

sg' = (sg)' - (<*)' = tk' 

where h' is in Gf, and this is the statement that G' admits R. It follows 
from the above equation that the isomorphism of G upon G' is an 
operator-isomorphism. If the dimension of G over R is finite, G1 would 
have the same finite dimension over R, and this would imply G = G' 
which contradicts the hypothesis. Hence G is of infinite dimension 
over R. 

COROLLARY 1. If G is the direct sum of co groups each isomorphic 
to R, then G is an I-group if, and only if, œ is infinite. 

PROOF. G admits J? as a field of operators and G is infinite-dimen­
sional over R if, and only if, co is infinite. 

COROLLARY 2. The additive group of all rational numbers, R, is not 
an I-group. 

PROOF. R satisfies the hypothesis of Corollary 1 with co = l. 
It is interesting to note that the hypothesis of Theorem 4, that an 

abelian group G admits the field R of rational numbers as an operator 
domain, implies that every element of G except the identity is of in-

6 H. Zassenhaus, Lehrbuch der Gruppenthorie, p. 66, Satz 15. 
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finite order. For if ng~0 with g in G and n a nonzero integer, 
(l/n)(ng)=g = 0. 

The results of this section may be generalized in the following way.8 

Let G be an abelian group admitting an integral domain D of opera­
tors. Let F be the quotient field of D. 

DEFINITION 3. G is an I-group with respect to D, or more simply, a 
D-group, if G contains an operator-isomorpHic proper subgroup. 

The following theorems whose proofs are simplified versions of the 
proofs of Theorem 3 and Theorem 4 may be stated. 

THEOREM 5. If G is an abelian group admitting D as a domain of 
operators, such that ag = 0 for ainD and gin G implies that either a = 0 
or g = 0, and if G does not admit F as a field of operators, then G is a 
D-group. 

THEOREM 6. If G admits F as afield of operators, then G is a D-group 
if, and only if, G is infinite-dimensional over D. 

4. Summary. If H is a group of rank 1, then H is an unmixed 
group, that is, either every element of H is of finite order or every 
element of H except the identity is of infinite order. If H does not 
contain elements of infinite order, the primary components of H are 
either finite cyclic groups or groups of type p™. If H does contain 
elements of infinite order, H is essentially a subgroup of the additive 
group of all rational numbers,7 R. Hence if a group G is completely 
reducible it is the direct sum of groups of the three types mentioned 
above. Let F(G) be the direct sum of those direct summands of G 
which do not contain elements of infinite order. Then F(G) is the sub­
group of all of the elements of finite order in G, and G = F(G)+I(G) 
where 1(G) is the direct sum of rational groups. 

THEOREM 7. If Gis a completely reducible group, then G is an I-group 
if, and only if, either F(G) or 1(G) is an I-group. 

PROOF. If either F(G) or 1(G) is an I-group, then G is an J-group 
by Lemma 1. If G contains an isomorphic proper subgroup G', then 
G' = F'(G)+I'(G) where F'(G) is the map of F(G) and I'(G) is the 
map of 1(G) under the isomorphism. But F'(G)^>F(G) since orders 
are preserved. If F'(G)<F(G), the theorem is proved; therefore, 
let us assume that F'(G) = F(G). 1(G) is isomorphic to the differ-

6 The author wishes to thank the referee for suggesting these generalizations with 
their proofs, which in turn suggested a revision of this section. 

7 See the reference of footnote 4. 
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ence group G — F(G) which contains properly the difference group 
G'-F'(G) since F'(G) = F(G). Now I'(G) is isomorphic to G'~-F'(G) 
and to 1(G). Hence G — F(G) is an J-group and it follows that 1(G) 
which is isomorphic to G — F(G) is also an J-group. 

It follows from Theorem 7 that the theorems and corollaries of 
§§2 and 3 survey completely all completely reducible groups, G, which 
are /-groups. 

UNIVERSITY OF WASHINGTON 

AN EXISTENCE THEOREM FOR LATIN SQUARES 

MARSHALL HALL 

1. Introduction. A latin square may be interpreted as a representa­
tion of a 3-web or as the multiplication table of a quasi-group. Hence 
the following theorem has application both in the theory of projec­
tive planes and in the theory of quasi-groups. It is derived from a very 
interesting result of P. Hall. 

2. The existence theorem. Is there any combinatorial restriction 
which prevents us from constructing a latin square by adding a row 
at a time? The following theorem shows that such a procedure is 
permissible. 

THEOREM. Given a rectangle of n—r rows and n columns such that 
each of the numbers 1, 2, • • • , n occurs once in every row and no number 
occurs twice in any column, then there exist r rows which may be added to 
the given rectangle to form a latin square. 

PROOF. Let d, i = l, 2, • • • , n be the subset of the numbers 
1, 2, • • • , n which do not occur in the ith column of the given rec­
tangle. Then each d contains r numbers and each number occurs r 
times in all the Cs. For there are n — r numbers in the ith column and 
each number has appeared in n — r columns. It will be shown that the 
subsets satisfy the requirements of P. Hall's theorem:1 

In order that a complete system of distinct representatives of subsets 
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