SCHUR’S THEOREMS ON COMMUTATIVE MATRICES
N. JACOBSON

In 1905 I. Schur! proved that the maximum number N(n) of lin-
early independent commutative matrices of # rows and columns is
given by the formula N(n)=[n%/4]4+1=124+1 if n=2» and
=p(rv—1)+1 if n=2v—1. Schur also determined the sets of linearly
independent commutative matrices containing N(n) elements. In
this note we give a simpler derivation of Schur’s results and an ex-
tension of these results from algebraically closed fields to arbitrary
fields.

If 4y, -+, Any) is a set of linearly independent commutative
matrices, the set % of matrices Y_A4.$: where ¢ is arbitrary in the un-
derlying field ® is a commutative subalgebra containing the identity
of the matrix algebra ®,. Hence N(z) is the maximal dimensionality
of commutative subalgebras of ®,. It is easy to see that N(n) = [n2/4]
+1. For consider the set 8, of matrices

® (o )

where if n=2v, 4 is arbitrary in ®, and if »=2r—1, 4 is an arbitrary
matrix of » rows and »—1 columns. Thus dim 8,= [#?/4]. It may be
verified that B, is a zero algebra. Hence the algebra B, obtained by
adjoining 1 to B, is a commutative algebra of dimensionality
[#2/4]4+1. We remark also that if #=2r—1 we may replace 8, by
the algebra 8, of matrices of the form (1) in which 4 is an arbitrary
matrix of »—1 rows and » columns. We denote by 8, the extension
of 3. obtained by adjoining 1.

To prove that N(n) < [#?/4]+1 it suffices to assume that & is
algebraically closed. For if 44, - - -, Ax(s) are linearly independent
and commutative in &,, then they have these properties in T, for any
extension field 2 of the field ®. Thus N(n, ®) S N(n, 2). We shall
therefore assume that ® is algebraically closed. Let ¥ be a commuta-
tive subalgebra of ®, containing the identity and let N be the dimen-
sionality of % over ®. We suppose first that ¥ is an indecomposable
algebra of matrices. Then it is known that by replacing % by a similar
set we may suppose that the matrices of % have the form
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Thus A= (1)4+N where N is a nilpotent algebra of matrices in proper
triangular form, that is, of the form (2) in which a=0. Evidently
dimR=N-—1.
Let the kith column (k;>1) be the first column for which there
exists a matrix Uy, in N with element in the (1, %,) position not equal

to 0. We may suppose that the element in the (1, 1) position of Uy,
is 1. We normalize Ui, further by using the following lemma.

LeMMA 1. Let UE D, and let V be the matrix obtained from U by
adding the kih column multiplied by 0 to the lth column (k5£1l) and then
subtracting the lth row multiplied by 0 from the kth row. Then U and V
are similar.

We have V=S71US where S=1+exf, €:; the matrix with 1 in the
(k, 1) position and 0’s elsewhere.

We may apply this lemma to Ui, and replace it by a matrix whose
first row is ey, =(0, -+, 1,0, .-, 0) where the 1 is in the kith
column. The operations required for this purpose are additions of
multiples of the kijth column to later columns and additions to the
kith row of later rows. These operations replace i by a properly tri-
angular set of matrices M’ similar to M such that all the elements
in the (1, j) position with j <k, in R’ are 0 and such that N’ contains
a matrix Vi, (similar to Uix,) whose first row is ex,. Now let P’ be
the subspace of N’ of matrices in which the elements in the (1, k1)
position are 0 and suppose that the ksth column (k2>k,) is the first
column for which there is a matrix Uy, in P’ with element in the
(1, k2) place not equal to 0. Evidently any matrix in 9’ has the form
ViBi+P’, P’ in B’. We now apply to U, the process used before
for Ui, and replace it by a matrix Vi, similar to it and having ey, for
first row. The set N’ will be transformed into a set N’ of properly
triangular matrices and Vi, changed into a new matrix which we
shall again denote as Vi with first row ex. Any matrix in N’/ has
the form 4 = V1,81+P’/, P’ in P’/, the transform of the set P’. It
is clear that the elements in the (1, j) position, j<ks, for any matrix
in P’ are 0. Hence 4 = Virf1+ Vir,Be+S’’ where S’/ is in the sub-
space &’/ of N’/ of matrices having 0 in the (1, j) position with j <k,.
This process may be continued and proves the following lemma.

LeEMMA 2. The set \ is similar to a set N of properly triangular
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matrices that contain matrices Vipy, + + +, Vik, such that the first row of
Viks is er,y 1 <k1<ks< -+ - <ky, and such that any matrix in N has
the formZVlk.~B;+Z , Where Z has first row 0.

Now let N2 be the subset of MM of matrices Z having first row 0.
Evidently R = { Vig, - - -, Vi, } + T and the Vi are linearly in-
dependent. Hence dim N =N —1=r+4dim N3 Now we note that if
ZEN,, the first row of V1x.Z is the k;th row of Z and the first row of
Z Virs is 0. Hence the k;th row of every matrix Z in 9 is 0.

We now repeat the argument for N;. Then Ny may be replaced by
a set NP similar to Ny such that (1) NG is properly triangular,
(2) N contains matrices Vey, * - -, Va, having first row 0 and sec-
ond row ey, - - -, e,, respectively, such that any matrix in NY has
the formz Va:B:+Z where Z is a matrix with first two rows 0. Let 9
denote the set of matrices Z. We assert that if s=I; or s=Fk; then
the sth row of M is 0. This is clear if s=I;. Hence suppose that
s=k;##any l;. Then the matrices of N, all have k;th row 0 and the
operations performed in passing from RN to NG do not affect this
row. Hence the kjth row of every matrix in NY is 0. Evidently
N—1=r+s-4+dim Ns.

We now write k; =Fky, l;=Fkai, ¥ =71, s=r2. Then if we continue this
process we see that N—1 is equal to the number of matrices in the
following set

€1k11y * * * y €lkyry
(3) e2kzp tt 0y e2kgrg

.......

where 1<kby< + -+ <k1r1, 2<kny<kpn< + -+ <Ry, and ;=0
if i=k; with j<¢. Let s1, Sz, - -+, Su be the complete set of in-
tegers k;; arranged in increasing order. Then it is clear that N—1
=N(sy, S3, - * *, Sm), the number of matrices in the set

€131y €251y * * * 4 Ca1—1ya1
(4) €lsgy €289y * * * y Cs1—1ysgy Cartlysg ° * ° )y Csg—lysy

oooooooooooooooooo

Evidently

N(sy sy o ySm)=(E1—=1) 4+ (2= 2)+ - 4 (sm —m)

(5) = > si— m(m+ 1)/2.

Hence we have
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N-1SN(u s SNn—m+1-,n)
= m(n — m).

(6)

Now m(n—m) attains its maximum value for m = [#/2]. If n=2» this
maximum is »? and if #=2r—1, it is »(v—1). Thus the maximum
value is [#2/4]. This proves for indecomposable algebras ¥ the follow-
ing theorem.

THEOREM 1. If U is a commutative subalgebra of ®,, dim A < [n2/4]
+1.

If A is decomposable we suppose that the matrices of % have the

form
@ »)
0 B
where 4 €®, and BE®,,, n;=1, m+ny=n. We may assume that
the theorem holds for the ®,;.

Case 1. n=2v—1, m=2v—1, ny=2v,. Here v=wv+r, and
N=vi(n—1)+14+vi+15v(v—1)+1. Equality holds between the
last two terms only when #=3.

Case 2. =2, m=21—1, ny,=2vy—1. Here v=pv;+r,—1 and
N=2=n(n—1)+14v(r2—1)+1=12+1. Equality holds only if n=2.

Case 3. n=2», ny=2w;, ny=2v,. Here v=w+v;, and N=»}+1+12
+1<»?+41. Thus the theorem is proved.

We have also proved the following theorem.

THEOREM 2. The maximum number N(n) of linearly independent
commutative matrices of n rows and columns is given by the formula

N(n) = [n2/4]+1.

We shall investigate next the form of commutative subalgebras %
of ®, of the maximum dimensionality N(n). Suppose first that % has
the structure A= (1)4+N where N is a nilpotent algebra. Then it is
known that by replacing 2 by a similar set we may suppose that the
matrices of N are properly triangular. We may apply the above con-
siderations to 9. By (3), (4), (5) and (6) we see that if »=2» we must

haveky=ky= -+ =ky=v+1, -, kb, =ky,= -+ =k,,=nasthe
set of k’s in (3). If #=2v—1 the set of %’s is either ku= - -+ =k,
=V+1, e ,kl p1 T e e =ky y—1=7 OF k11= N =kv—11=V’ ce e,
ky= - .+ =k,1,=n.Suppose first that » is even. Let ¥ (r =») and

N2 be determined as before. It is clear that N () is similar to N by a
matrix in ®, and we need not assume here that ® is algebraically
closed. The matrices of M3 have the form
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0---0m}
) B=< R l 4 )"'

o | o

Since kg3 =v-1 it is clear that the second row of R is 0. Moreover the
operations used to pass from Ns to N; affect only the last » rows and
last v columns of ;. Hence the third row of R is the same as the third
row of the corresponding matrix in Ns. Since k3 =»-1 the third row
of R is 0. Similarly the other rows of R are 0, and R=0 in (7). Now
dim RNy=r2—r. Hence N. consists of all matrices of the form (7) in
which R=0 and 4 is arbitrary. Let

0(0---0 1 0--:0
V1i=< VJ' >x j=V+1:"'1'n9

| T,

where the 1 is in the jth column and T;is a properly triangular matrix.
Since Vy;B =B V;; the following holds in &,:

0---0
( >T5=0.
4

Since 4 is arbitrary, T;=0. Thus N() is the set 8, and ¥ is similar
to the algebra 9B, defined before. If # is odd a similar argument shows
that ¥ is similar either to B, or to B,.

We suppose now that % is arbitrary. Evidently A contains the iden-
tity matrix. Since #>3 by the proof of Theorem 1, ¥ is indecompos-
able. Moreover if Q is the algebraic closure of ® then A, is an
indecomposable algebra containing the identity. It follows that %,
is similar to a set of matrices of the form (1). Hence Ao=(1)+3
where 3 is nilpotent and so g is similar to either B,(Q) or B,(Q).
Thus 3 is a zero algebra. Now let N be the radical of the algebra %
and consider the semi-simple algebra A =% —N. The extension g is a
homomorphic image of Ag. Hence Ag=(1)+23 where 3 is a zero
algebra. The structure of ¥ is given by the following lemma.

Lemma 3. If % is a semi-simple commutative algebra such that
o= (1)+3 where 3 is a zero algebra, then either A= (1) or ® is an
imperfect field of characteristic 2 and ¥ =P(x) where x2=§, o non-
square in P.

Since ¥ is semi-simple, ¥ is a direct sum of fields, but since JYq has
only one idempotent element, ¥ is a field. Let 3 > (1). Then ¥ has no
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separable subfields, for if 2 were such a subfield Zg is a direct sum
of fields and %o would contain more than one idempotent element.
Thus & has characteristic 0 and 9 contains an element x such that
x?=£is in ® where £ is not a pth power in ®. Now there exists an ele-
ment 5 in Q such that n?=¢ and hence the element z=x—7 in g
is nilpotent of index p. Since B is a zero algebra, p=2. It follows
readily that in this case ¥ =®(x), x2=¢£.

This lemma shows that unless ® is an imperfect field of character-
istic 2 any commutative subalgebra ¥ of ®,(z> 3) of maximum di-
mensionality has a difference algebra with respect to its radical R of
dimensionality 1. Since A contains the identity, A=(1)+N. As we
have seen, this implies that ¥ is similar to either B, or to Ba.

THEOREM 3. Suppose that ® is not an imperfect field of characteristic 2
and let n> 3. Then if W is a subalgebra of ®, of maximum dimensional-
ity N(n), A is similar to B, if n=2v and U is similar to either B, or
Baif n=2vr—12

As a consequence we have the following theorem.

THEOREM 4. Let ®, n and A be as in Theorem 3. Then A= (1)+N
where N is a zero algebra.

We remark finally that if # is odd the sets 8, and §,, are not simi-
lar. This may be seen by considering the sets 8, and 3,. Let S(&)
be the space determined by the columns of the matrices of 8.(3.).
Then dim &=y and dim &=»—1. On the other hand if 3, were simi-
lar to 8, we would have dim & =dim &. It follows that 3, and 3, are
not similar and hence 8B, and §, are not similar. Thus in this case
there are for n=2»—1>3 two distinct classes in the sense of similar-
ity of commutative subalgebras of dimensionality N(n).
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2 If n=2, 3, A may be decomposable. The determination of these algebras is readily
obtained.



