SCHUR'S THEOREMS ON COMMUTATIVE MATRICES

N. JACOBSON

In 1905 I. Schur¹ proved that the maximum number N(n) of linearly independent commutative matrices of n rows and columns is given by the formula $N(n) = [n^2/4] + 1 = \nu^2 + 1$ if $n = 2\nu$ and $= \nu(\nu - 1) + 1$ if $n = 2\nu - 1$. Schur also determined the sets of linearly independent commutative matrices containing N(n) elements. In this note we give a simpler derivation of Schur's results and an extension of these results from algebraically closed fields to arbitrary fields.

If $A_1, \dots, A_{N(n)}$ is a set of linearly independent commutative matrices, the set \mathfrak{A} of matrices $\sum A_i \phi_i$ where ϕ_i is arbitrary in the underlying field Φ is a commutative subalgebra containing the identity of the matrix algebra Φ_n . Hence N(n) is the maximal dimensionality of commutative subalgebras of Φ_n . It is easy to see that $N(n) \geq \lfloor n^2/4 \rfloor + 1$. For consider the set \mathfrak{A}_n of matrices

$$\begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix}$$

where if $n = 2\nu$, A is arbitrary in Φ_{ν} and if $n = 2\nu - 1$, A is an arbitrary matrix of ν rows and $\nu - 1$ columns. Thus dim $\mathfrak{F}_n = [n^2/4]$. It may be verified that \mathfrak{F}_n is a zero algebra. Hence the algebra \mathfrak{F}_n obtained by adjoining 1 to \mathfrak{F}_n is a commutative algebra of dimensionality $[n^2/4] + 1$. We remark also that if $n = 2\nu - 1$ we may replace \mathfrak{F}_n by the algebra $\overline{\mathfrak{F}}_n$ of matrices of the form (1) in which A is an arbitrary matrix of $\nu - 1$ rows and ν columns. We denote by $\overline{\mathfrak{F}}_n$ the extension of $\overline{\mathfrak{F}}_n$ obtained by adjoining 1.

To prove that $N(n) \leq \lfloor n^2/4 \rfloor + 1$ it suffices to assume that Φ is algebraically closed. For if $A_1, \dots, A_{N(n)}$ are linearly independent and commutative in Φ_n , then they have these properties in Σ_n for any extension field Σ of the field Φ . Thus $N(n, \Phi) \leq N(n, \Sigma)$. We shall therefore assume that Φ is algebraically closed. Let $\mathfrak A$ be a commutative subalgebra of Φ_n containing the identity and let N be the dimensionality of $\mathfrak A$ over Φ . We suppose first that $\mathfrak A$ is an indecomposable algebra of matrices. Then it is known that by replacing $\mathfrak A$ by a similar set we may suppose that the matrices of $\mathfrak A$ have the form

Received by the editors January 14, 1944.

¹ Zur Theorie vertauschbaren Matrizen, J. Reine Angew. Math. vol. 130 (1905) pp. 66-76.

$$\begin{pmatrix}
\alpha & * \\
 & \cdot \\
 & \cdot \\
 & 0 & \alpha
\end{pmatrix}.$$

Thus $\mathfrak{A} = (1) + \mathfrak{N}$ where \mathfrak{N} is a nilpotent algebra of matrices in proper triangular form, that is, of the form (2) in which $\alpha = 0$. Evidently dim $\mathfrak{N} = N - 1$.

Let the k_1 th column $(k_1>1)$ be the first column for which there exists a matrix U_{1k_1} in \mathfrak{N} with element in the $(1, k_1)$ position not equal to 0. We may suppose that the element in the $(1, k_1)$ position of U_{1k_1} is 1. We normalize U_{1k_1} further by using the following lemma.

LEMMA 1. Let $U \in \Phi_n$ and let V be the matrix obtained from U by adding the kth column multiplied by θ to the lth column $(k \neq l)$ and then subtracting the lth row multiplied by θ from the kth row. Then U and V are similar.

We have $V = S^{-1}US$ where $S = 1 + e_{kl}\theta$, e_{kl} the matrix with 1 in the (k, l) position and 0's elsewhere.

We may apply this lemma to U_{1k_1} and replace it by a matrix whose first row is $e_{k_1} = (0, \dots, 1, 0, \dots, 0)$ where the 1 is in the k_1 th column. The operations required for this purpose are additions of multiples of the k_1 th column to later columns and additions to the k_1 th row of later rows. These operations replace \Re by a properly triangular set of matrices \mathfrak{N}' similar to \mathfrak{N} such that all the elements in the (1, j) position with $j < k_1$ in \mathfrak{N}' are 0 and such that \mathfrak{N}' contains a matrix V_{1k_1} (similar to U_{1k_1}) whose first row is e_{k_1} . Now let \mathfrak{P}' be the subspace of \mathfrak{N}' of matrices in which the elements in the $(1, k_1)$ position are 0 and suppose that the k_2 th column $(k_2 > k_1)$ is the first column for which there is a matrix U_{1k_2} in \mathfrak{P}' with element in the $(1, k_2)$ place not equal to 0. Evidently any matrix in \Re' has the form $V_{1k_1}\beta_1+P'$, P' in \mathfrak{P}' . We now apply to U_{1k_2} the process used before for U_{1k_1} and replace it by a matrix V_{1k_2} similar to it and having e_{k_2} for first row. The set \mathfrak{N}' will be transformed into a set \mathfrak{N}'' of properly triangular matrices and V_{1k_1} changed into a new matrix which we shall again denote as V_{1k_1} with first row e_{k_1} . Any matrix in \mathfrak{N}'' has the form $A = V_{1k_1}\beta_1 + P''$, P'' in \mathfrak{P}'' , the transform of the set \mathfrak{P}' . It is clear that the elements in the (1, j) position, $j < k_2$, for any matrix in \mathfrak{P}'' are 0. Hence $A = V_{1k_1}\beta_1 + V_{1k_2}\beta_2 + S''$ where S'' is in the subspace \mathfrak{S}'' of \mathfrak{N}'' of matrices having 0 in the (1,j) position with $j \leq k_2$. This process may be continued and proves the following lemma.

LEMMA 2. The set \Re is similar to a set $\Re^{(r)}$ of properly triangular

matrices that contain matrices $V_{1k_1}, \dots, V_{1k_r}$ such that the first row of V_{1k_i} is e_{k_i} , $1 < k_1 < k_2 < \dots < k_r$, and such that any matrix in $\Re^{(r)}$ has the form $\sum V_{1k_i}\beta_i + Z$, where Z has first row 0.

Now let \mathfrak{N}_2 be the subset of $\mathfrak{N}^{(r)}$ of matrices Z having first row 0. Evidently $\mathfrak{N}^{(r)} = \{V_{1k_1}, \dots, V_{1k_r}\} + \mathfrak{N}_2$ and the V_{1k_i} are linearly independent. Hence dim $\mathfrak{N}^{(r)} = N - 1 = r + \dim \mathfrak{N}_2$. Now we note that if $Z \in \mathfrak{N}_2$, the first row of $V_{1k_i}Z$ is the k_i th row of Z and the first row of ZV_{1k_i} is 0. Hence the k_i th row of every matrix Z in \mathfrak{N}_2 is 0.

We now repeat the argument for \mathfrak{N}_2 . Then \mathfrak{N}_2 may be replaced by a set $\mathfrak{N}_2^{(s)}$ similar to \mathfrak{N}_2 such that (1) $\mathfrak{N}_2^{(s)}$ is properly triangular, (2) $\mathfrak{N}_2^{(s)}$ contains matrices $V_{2l_1}, \dots, V_{2l_s}$ having first row 0 and second row e_{l_1}, \dots, e_{l_s} , respectively, such that any matrix in $\mathfrak{N}_2^{(s)}$ has the form $\sum V_{2l_i}\beta_i + Z$ where Z is a matrix with first two rows 0. Let \mathfrak{N}_3 denote the set of matrices Z. We assert that if $s = l_i$ or $s = k_j$ then the sth row of \mathfrak{N}_3 is 0. This is clear if $s = l_i$. Hence suppose that $s = k_j \neq \text{any } l_i$. Then the matrices of \mathfrak{N}_2 all have k_j th row 0 and the operations performed in passing from \mathfrak{N}_2 to $\mathfrak{N}_2^{(s)}$ do not affect this row. Hence the k_j th row of every matrix in $\mathfrak{N}_2^{(s)}$ is 0. Evidently $N-1=r+s+\dim \mathfrak{N}_3$.

We now write $k_i = k_{1i}$, $l_i = k_{2i}$, $r = r_1$, $s = r_2$. Then if we continue this process we see that N-1 is equal to the number of matrices in the following set

(3)
$$e_{2k_{21}}, \cdots, e_{1k_1r_1} \\ e_{2k_{21}}, \cdots, e_{2k_2r_2}$$

where $1 < k_{11} < \cdots < k_{1r_1}$, $2 < k_{21} < k_{22} < \cdots < k_{2r_2}$, \cdots , and $r_i = 0$ if $i = k_{jl}$ with j < i. Let s_1, s_2, \cdots, s_m be the complete set of integers k_{ij} arranged in increasing order. Then it is clear that $N-1 \le N(s_1, s_2, \cdots, s_m)$, the number of matrices in the set

Evidently

(5)
$$N(s_1, s_2, \dots, s_m) = (s_1 - 1) + (s_2 - 2) + \dots + (s_m - m) \\ = \sum s_i - m(m+1)/2.$$

Hence we have

(6)
$$N-1 \leq N(s_1, \dots, s_m) \leq N(n-m+1, \dots, n) = m(n-m).$$

Now m(n-m) attains its maximum value for $m = \lfloor n/2 \rfloor$. If $n = 2\nu$ this maximum is ν^2 and if $n = 2\nu - 1$, it is $\nu(\nu - 1)$. Thus the maximum value is $\lfloor n^2/4 \rfloor$. This proves for indecomposable algebras $\mathfrak A$ the following theorem.

THEOREM 1. If \mathfrak{A} is a commutative subalgebra of Φ_n , dim $\mathfrak{A} \leq \lfloor n^2/4 \rfloor + 1$.

If $\mathfrak A$ is decomposable we suppose that the matrices of $\mathfrak A$ have the form

$$\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$$

where $A \in \Phi_{n_1}$ and $B \in \Phi_{n_2}$, $n_i \ge 1$, $n_1 + n_2 = n$. We may assume that the theorem holds for the Φ_{n_i} .

Case 1. $n = 2\nu - 1$, $n_1 = 2\nu_1 - 1$, $n_2 = 2\nu_2$. Here $\nu = \nu_1 + \nu_2$ and $N \le \nu_1(\nu_1 - 1) + 1 + \nu_2^2 + 1 \le \nu(\nu - 1) + 1$. Equality holds between the last two terms only when n = 3.

Case 2. $n=2\nu$, $n_1=2\nu_1-1$, $n_2=2\nu_2-1$. Here $\nu=\nu_1+\nu_2-1$ and $N \le \nu_1(\nu_1-1)+1+\nu_2(\nu_2-1)+1 \le \nu^2+1$. Equality holds only if n=2. Case 3. $n=2\nu$, $n_1=2\nu_1$, $n_2=2\nu_2$. Here $\nu=\nu_1+\nu_2$ and $N=\nu_1^2+1+\nu_2^2+1<\nu_2^2+1$. Thus the theorem is proved.

We have also proved the following theorem.

THEOREM 2. The maximum number N(n) of linearly independent commutative matrices of n rows and columns is given by the formula $N(n) = \lfloor n^2/4 \rfloor + 1$.

We shall investigate next the form of commutative subalgebras \mathfrak{A} of Φ_n of the maximum dimensionality N(n). Suppose first that \mathfrak{A} has the structure $\mathfrak{A}=(1)+\mathfrak{N}$ where \mathfrak{A} is a nilpotent algebra. Then it is known that by replacing \mathfrak{A} by a similar set we may suppose that the matrices of \mathfrak{A} are properly triangular. We may apply the above considerations to \mathfrak{A} . By (3), (4), (5) and (6) we see that if $n=2\nu$ we must have $k_{11}=k_{21}=\cdots=k_{r1}=\nu+1, \cdots, k_{1r}=k_{2r}=\cdots=k_{rr}=n$ as the set of k's in (3). If $n=2\nu-1$ the set of k's is either $k_{11}=\cdots=k_{r1}=\nu+1, \cdots, k_{1r}=\cdots=k_{r-1}=n$ or $k_{11}=\cdots=k_{r-1}=\nu, \cdots, k_{1r}=\cdots=k_{r-1}=\nu$. Suppose first that n is even. Let $\mathfrak{A}^{(r)}$ ($r=\nu$) and \mathfrak{A}_2 be determined as before. It is clear that $\mathfrak{A}^{(r)}$ is similar to \mathfrak{A} by a matrix in Φ_n and we need not assume here that Φ is algebraically closed. The matrices of \mathfrak{A}_2 have the form

(7)
$$B = \begin{pmatrix} 0 & \cdots & 0 & \overbrace{0 & \cdots & 0}^{\nu} \\ R & A & 0 \end{pmatrix} v.$$

Since $k_{21} = \nu + 1$ it is clear that the second row of R is 0. Moreover the operations used to pass from \mathfrak{N}_2 to \mathfrak{N}_3 affect only the last ν rows and last ν columns of \mathfrak{N}_2 . Hence the third row of R is the same as the third row of the corresponding matrix in \mathfrak{N}_3 . Since $k_{31} = \nu + 1$ the third row of R is 0. Similarly the other rows of R are 0, and R = 0 in (7). Now dim $\mathfrak{N}_2 = \nu^2 - \nu$. Hence \mathfrak{N}_2 consists of all matrices of the form (7) in which R = 0 and A is arbitrary. Let

$$V_{1j} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ & & V_{j} & & & \\ & & & T_{j} & & & \end{pmatrix}, \qquad j = \nu + 1, \cdots, n,$$

where the 1 is in the jth column and T_j is a properly triangular matrix. Since $V_{1j}B = BV_{1j}$ the following holds in Φ_j :

$$\binom{0\cdots 0}{A} T_i = 0.$$

Since A is arbitrary, $T_j = 0$. Thus $\mathfrak{N}^{(r)}$ is the set \mathfrak{Z}_n and \mathfrak{A} is similar to the algebra \mathfrak{B}_n defined before. If n is odd a similar argument shows that \mathfrak{A} is similar either to \mathfrak{B}_n or to $\overline{\mathfrak{B}}_n$.

We suppose now that $\mathfrak A$ is arbitrary. Evidently $\mathfrak A$ contains the identity matrix. Since n>3 by the proof of Theorem 1, $\mathfrak A$ is indecomposable. Moreover if Ω is the algebraic closure of Φ then $\mathfrak A_{\Omega}$ is an indecomposable algebra containing the identity. It follows that $\mathfrak A_{\Omega}$ is similar to a set of matrices of the form (1). Hence $\mathfrak A_{\Omega}=(1)+3$ where $\mathfrak A$ is nilpotent and so $\mathfrak A_{\Omega}$ is similar to either $\mathfrak B_n(\Omega)$ or $\overline{\mathfrak B}_n(\Omega)$. Thus $\mathfrak A$ is a zero algebra. Now let $\mathfrak A$ be the radical of the algebra $\mathfrak A$ and consider the semi-simple algebra $\overline{\mathfrak A}=\mathfrak A-\mathfrak A$. The extension $\overline{\mathfrak A}_{\Omega}$ is a homomorphic image of $\mathfrak A_{\Omega}$. Hence $\overline{\mathfrak A}_{\Omega}=(1)+\overline{\mathfrak A}$ where $\overline{\mathfrak A}$ is a zero algebra. The structure of $\overline{\mathfrak A}$ is given by the following lemma.

LEMMA 3. If $\overline{\mathfrak{A}}$ is a semi-simple commutative algebra such that $\overline{\mathfrak{A}}_{\Omega}=(1)+\overline{\mathfrak{B}}$ where $\overline{\mathfrak{B}}$ is a zero algebra, then either $\overline{\mathfrak{A}}=(1)$ or Φ is an imperfect field of characteristic 2 and $\overline{\mathfrak{A}}=\Phi(x)$ where $x^2=\xi$, a nonsquare in Φ .

Since $\mathfrak A$ is semi-simple, $\overline{\mathfrak A}$ is a direct sum of fields, but since $\overline{\mathfrak A}_{\Omega}$ has only one idempotent element, $\overline{\mathfrak A}$ is a field. Let $\overline{\mathfrak A} > (1)$. Then $\overline{\mathfrak A}$ has no

separable subfields, for if Σ were such a subfield Σ_0 is a direct sum of fields and $\overline{\mathfrak{A}}_{\Omega}$ would contain more than one idempotent element. Thus Φ has characteristic $p \neq 0$ and $\overline{\mathfrak{A}}$ contains an element x such that $x^p = \xi$ is in Φ where ξ is not a pth power in Φ . Now there exists an element η in Ω such that $\eta^p = \xi$ and hence the element $z = x - \eta$ in $\overline{\mathfrak{A}}_{\Omega}$ is nilpotent of index p. Since $\overline{\mathfrak{A}}$ is a zero algebra, p = 2. It follows readily that in this case $\mathfrak{A} = \Phi(x)$, $x^2 = \xi$.

This lemma shows that unless Φ is an imperfect field of characteristic 2 any commutative subalgebra $\mathfrak A$ of $\Phi_n(n>3)$ of maximum dimensionality has a difference algebra with respect to its radical $\mathfrak A$ of dimensionality 1. Since $\mathfrak A$ contains the identity, $\mathfrak A=(1)+\mathfrak A$. As we have seen, this implies that $\mathfrak A$ is similar to either $\mathfrak B_n$ or to $\overline{\mathfrak B}_n$.

THEOREM 3. Suppose that Φ is not an imperfect field of characteristic 2 and let n > 3. Then if $\mathfrak A$ is a subalgebra of Φ_n of maximum dimensionality N(n), $\mathfrak A$ is similar to $\mathfrak B_n$ if $n = 2\nu$ and $\mathfrak A$ is similar to either $\mathfrak B_n$ or $\overline{\mathfrak B}_n$ if $n = 2\nu - 1$.

As a consequence we have the following theorem.

THEOREM 4. Let Φ , n and $\mathfrak A$ be as in Theorem 3. Then $\mathfrak A=(1)+\mathfrak A$ where $\mathfrak A$ is a zero algebra.

We remark finally that if n is odd the sets \mathfrak{B}_n and $\overline{\mathfrak{B}}_n$ are not similar. This may be seen by considering the sets \mathfrak{F}_n and $\overline{\mathfrak{F}}_n$. Let $\mathfrak{S}(\overline{\mathfrak{S}})$ be the space determined by the columns of the matrices of $\mathfrak{F}_n(\overline{\mathfrak{F}}_n)$. Then dim $\mathfrak{S} = \nu$ and dim $\overline{\mathfrak{S}} = \nu - 1$. On the other hand if \mathfrak{F}_n were similar to $\overline{\mathfrak{F}}_n$ we would have dim $\mathfrak{S} = \dim \overline{\mathfrak{S}}$. It follows that \mathfrak{F}_n and $\overline{\mathfrak{F}}_n$ are not similar and hence \mathfrak{B}_n and $\overline{\mathfrak{F}}_n$ are not similar. Thus in this case there are for $n = 2\nu - 1 > 3$ two distinct classes in the sense of similarity of commutative subalgebras of dimensionality N(n).

JOHNS HOPKINS UNIVERSITY

² If n=2, 3, $\mathfrak A$ may be decomposable. The determination of these algebras is readily obtained.