ON RIESZ SUMMABILITY OF FOURIER SERIES BY
EXPONENTIAL MEANS

FU TRAING WANG

Let f(¢) be an integrable periodic function with the period 2. Let
its Fourier series be

1) f@) ~ %o— + > @, cos nt + b, sin nt

n=1

and let
o) = {fx + ) + f(x — t) — 25}/2,

¢s(0) = (1/T(8) f ¢ — u)P-ip(u)du,

A, = a, cos nx + b, sin nx.
We shall prove the following result.!
If 4.,>—Kn=#fl7 (y>8>0) and
@) ¢s(t) = o(#7) as t— 0,
the Fourier series (1) converges fo s at t=x.
Set a=1—8/v, and
3) Co(w) = aoe™®/2 + 2 (e — )4,

n<w
The Fourier series (1) is said to be summable (en”, 7) to the sum s if?
C.(w) = se™™ 4 o(e™") as w— o,

Concerning this kind of summability we have the following theo-
rem.

THEOREM.? If (2) holds and T is a positive integer greater than y+1
the Fourier series (1) is summable (e"”, 7) to the sum s at t=x.

Received by the editors January 6, 1944.

1 G, H. Hardy and J. E. Littlewood [2], F. T. Wang [6]. Numbers in brackets
refer to the references listed at the end of the paper.

2 G. H. Hardy and M. Riesz [3].

3 Under the hypotheses of the Theorem I have established that the Fourier series
(1) is summable (e, v+ 5)(5>0) to the sum s at ¢=x, but the proof is very compli-
cated. See F. T. Wang [6].
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The convergence criterion above is deducible from this theorem
by the use of a result of Hardy,* namely if the series 3 peqo@n, with
terms an,= —Knet, 0<a <1, is summable (e, 1), it is convergent.

To prove the theorem we write

sin «¢

E.(w, t) = ta f (e« — e=")m1gx"ga—1 dx.

0
Then we have’ C,(w) = (2/7) [i¢ () E.(w, £)dt+se*+o(e™"), and if we
take w; =2"Yey, then

@ sin x¢
E.(w,t) = ar f (e4" — €=%)r1lex" g1
wl

dx + o(e™")

F,() + o(e™").

Hence
1
(4) Cr(w) = (2/7") j; ¢(t)Fw(t)dt -+ sers® + o(e'm“).

By setting #= [8]+1 and differentiating under the integral sign we
get

" ar © N N sin x#
F:, )(t) = —{mf (ev” — =) 12" g1 dx}
. dtr o t

n @
= Z K‘f (gw“ — ez"‘)r—lez“xa—l+n——i
0y

=0

sin (x¢ — a)
ti'+l
where a=(n—1)w/2.
By mathematical induction we can easily establish the formula
(dr/dxr) { (ew“ — ez“)f—lexaxa—l+n—i}

6 T r
©) = D D Kiper—De%gis® g (o) am+n—im(r—p)
Je=1 p==0

Then by the use of (5) and (6) and an integration by parts we find

n L i e ., sin(xt—2b
F‘i )(t) = Z Z E K”pe(r—i)w f eiz%yo ___(______)_dx
wy

) i=0 =1 pmo pitr
+ 0(3(7—1/2)w“wk1t—kz),
+G. H. Hardy [4].

5 F. T. Wang [6].

¢ Throughout this paper we use K or K; - « - as a constant different in different
occurrences.
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where c=(p+1)(a—1)+n—i—(r—1—p), and b=(n—i—7+1)7/2.

Put ¢t=1 in (7). Then E™(0) is finite for 1 Sm<n, and F™(1) «
=0(e™"). Successive integration of (4) by parts yields

® G =/ [ el E b s+ o™,

By a theorem on the fractional integral’

6u0) = (1/T(n — B)) f ¢ — w)-gp(u)du,

we have

©  Ciw) = @/ f os() Hulw)d 4 56 4 o(en),
where

Ho(u) = (1/T(n — B)) f ' ¢— 0" FPWd n>B>n—1)

(10)
(n)

=F, (u) (n = B).

Concerning H,(#) we require the following two lemmas.

LEMMA 1. For w>K and 0<u <1,

n-l n—1
Hu(w) = 3 0(e" P~ + 3 O(er«ori-tyrs=+7)
{0 S0

+ O(e"w™ (1 — u)™F=1) 4 O(em"u+F-2).

Proor. From (10) and (5) we have

Hu(u) = 2 Ki f (e — ¢")rlgx" ga—tn—idy

(11) =0
f (4 — gy (0 sin (xf — a) i
i+l
Now
(12) fl“(t — u)"—ﬂ—lii-lz——-—(t:_—.l——-‘—z-)— dt = 0{(1 —_ u)”‘ﬁ"x‘l}.

7L. S. Bosanquet [1].
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It follows from a change of variable, the second mean value theo-
rem, and a theorem on the I function,® that

f (¢ — )t sin (x¢ — a) sin @t —a)

t1+l

(13) = ynf-i-1 f "1 gin (a*(1 + ) — a)dv + O(u"F-i-2x~1)
0

= O(u=1a=") + O(ur—b=+2-1),

The lemma is proved by (11), (12), (13) and an easy estimate of the
term ¢=n in (11).

LEMMA 2. Forw>K and 0<u <1,

n
H,.,(u) = Z O(erw“u—r-—t'—lwr(a—1)+ﬂ—i) + O(e(f—llz)wawklu—kz)

=0
n
+ Z O(erwaun—ﬂ—-r-—i—lw (r=1) (a=D)+n—i~1)
=0

+ O(em“w<r—-1) @=1)+n—1(] — g)n—p-1),

Proor. From (13) we get

n 7T r—1 2]
Ho(uw) =2, > > Kiipe""f)”af ei="x°dx
w1

$=0 j=1 p=0
(14 1 sin (xt — b)
. (t — w)rF"t ———— 4t 4 01Dy~ a)
“ ti'+r !
and
sin (xt — b)
—_ -$—-1
f (¢t — w)" e dt
= ynp—i—r f " P 1gin {xu(l + v) — b{dv
(15) : toudt +9) = 3]

+O((1 — w)™-1a) 4 O(urb-—r=1a1)
= ymigf~"T (B8 — n) sin (xu — b’)
+ 0((1 — w)r—r1xg~1) 4+ O(ur—F—1x-1),

From (14) and (15), Lemma 2 follows.

¢ E. C. Titchmarsh [5, p. 107].



424 F. T. WANG

PRrOOF OF THE THEOREM. By Lemma 1 and (2)

(16) fO” ¢s(u) Ho(u)du = o(e™")
and by (2) and Lemma 2
1 . ds(w)H,(u)du = o(e™”)

By (9), (16), and (17), then,
Cr(w) = se™® + o(e™")
Thus the theorem is proved.
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