CLUSTER POINTS OF SUBSEQUENCES!
M. M. DAY

In the preceding paper [1]2 Buck defines a class of “subsequences”
of a multiple sequence and shows that “almost all” of such subse-
quences have certain properties. This note is essentially based on a
different choice of the definition of “subsequences”; that is, this paper
and [1] are generalizations in different directions of a preceding pa-
per by Buck and Pollard (reference 2 of [1]). In this discussion counta-
bility is the important property of the index systems such as the
integers underlying the simple sequences or the #n-tuples of integers
underlying the multiple sequences. Countability is a slightly stronger
condition than is necessary since the results will be shown to hold as
well for functions of # variables as for multiple sequences; some other
special cases are mentioned at the end of this paper. Also I modify
Buck’s approach by considering cluster points in neighborhood spaces
rather than limit points in convergence spaces [3]. It may be men-
tioned that even for multiple sequences Theorems 1 and 2 of these
papers are independent since Buck’s set of “subsequences” is a set
of measure zero in the set of “subsequences” considered here; my
Theorem 3 contains the corresponding theorem of [1] as a special
case. Lemma 1 and its corollary, Lemma 3, are the fundamental re-
sults on which the theorems rest; Lemma 3 is the generalization ap-
propriate to this paper of the lemma in §3 of [1].

1. Preliminaries. If R is any set, a product measure can be defined
in the set of characteristic functions of subsets of R [l, footnote 2]
and this in turn induces a measure | - - - | for subsets of the set €
of all subsets E of R; this measure is non-negative, completely addi-
tive, and (if R is infinite) takes all values between 0 and 1 inclusive;
its other principal characteristic is that if 7, - - -, 7+ ER, then?
{E| no r;€E} is of measure 2-*; hence if E, is an infinite subset
of R and 4 ={E|ENE,is empty}, |4| =0.

An index system R=(R, =) is a set R and a binary relation 2 such
that = is transitive and every element 7, has a successor 7; >7¢ such
that 7o 7;. (In the language of [4] R is oriented and has no terminal
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1 Considerations suggested by the preceding paper of R. C. Buck.

2 Numbers in brackets refer to the Bibliography at the end of the paper.

3 The usual notation of \J and /M will be used for union and intersection of sets;
{p| P} will mean the set of all p having the property P.
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elements.) A set E in R is called cofirnal in R if for every 7 in R there
exists 7' =7 with 7’ in E. Let E*= {r|r Zsome 7’ in E}.

Note that if R is the system of integers ordered by magnitude, then
the cofinal subsets of R are the infinite subsets; for g defined on a gen-
eral index system R it is clear that reducing the domain of definition
of g to a cofinal subset E of R is a generalization of the process of se-
lecting a subsequence in case R is the system of integers.

A subsystem R’=(R’, =) of R=(R, =) is a subset R’ of R with
the order relation between points of R’ defined by that in R; if R’
is cofinal in the index system R, then (R’, ) is also an index system.
Cofinality is transitive in a transitive system; that is, if R’ is cofinal
in (R, =) and R’ is cofinal in (R’, =), then R’ is cofinal in (R, =).

We may note that if R is the set of n-tuples of integers (the case
studied in [1]), where (43, - =+, 8.) = (1, * * * , ju) if and only if 42 2
for every k <n, then the product subsets defined by Buck are cofinal
in R but are very sparsely distributed in the set of all cofinal subsets
of R; to be precise, such sets form a set of measure 0 if » = 2. A product
set in the set of n-tuples of integers, R=IXIX - -+ XI, is a set of
the form E;XE;X -+ XE,, E,CI; these product sets define the
class of “subsequences” used by Buck. If E; is the set of elements of R
with all coordinates not greater than % and if A is the class of all
subsets E of R such that ENE, is a product set in Ey, then 4 =N 4.
It is easily seen that if E'CEy, {E|ENE;=E’} is of measure 2-¥";
since there are (2¥—1)7+41<2* product sets in Ej, it follows that
| A&| <27+=F"; if # =2, this tends to zero as k increases so | 4| =0.

LemMa 1. If R has a countable cofinal subset and (C is the set of all
cofinal subsets of R, then |C| =1.

Let R’ be a countable cofinal subset of R and suppose E&(°; then
there exists 7 in R such that (r)*N\E is empty. Since there exists ¢’
in R’ such that 7’27, it follows that (#')*"\E is empty. Since #’ has an
infinite number of distinct successors in R/, the set 4 = {E| (')*NE
i‘s elmpty} is of measure zero. Since E—C=U,crp 4y, |E—C| =0 s0

C| =1.

By means of this lemma we can define a measure in (® by taking
the measure in € of elements of (%; since | ®| =1, we can talk meaning-
fully about almost all cofinal subsets of R [5, Theorem 1.1]. Note
that cofinality of E is not affected by adding or removing a finite
set, so ( is a “homogeneous” subset of € and therefore if it is measur-
able must have measure 0 or 1; which case occurs when R does not
have a countable cofinal subset, I do not know.

X is a neighborhood space [3] if for each x in X is defined a non-
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empty family of subsets of X, the neighborhoods of x. If g is a func-
tion defined on an index system R with values in a neighborhood
space X, x is a limit point of g (symbol: x =1im 3, g) if for each neigh-
borhood N of x and every 7o in R there exists 7, 27y such that g(r) EN
whenever 7 2. (This definition is due to Alaoglu and Birkhoff [2];
in case R is directed it reduces to the standard simpler form:
x=lim &,>, g if for each N there exists 7y in R such that g(r) EN when-
ever r 2ry. R is directed if every pair of elements has a common suc-
cessor.) A point x is called a cluster point of g if for every neighborhood
N of x and every 7, in R there exists 7127, such that g(r1) EN. Clearly
every limit point of g is a cluster point of g, but not conversely. (See
Lemma 2 below.) If g is a function from R into X and E is a cofinal
subset of R, let gz be the function g reduced onto E and let Qgz be
the set of cluster points of gg; the function gz and the set Qgg will
play a role here analogous to that played by the subsequence x’ and
the set Px' in [1]. Clearly x=lim,5) g implies x=lim ;) gr for
every E cofinal in R, Let Pgg be the set of limit points of functions
gr' for E’ cofinal in E; that is, x & Pgg if and only if there exists E’
cofinal in (E, 2) such that x =lim @&, gz’

Recall that X is said to satisfy Hausdorfl's first countability condi-
tion if for each x in X there is a countable set { N:} of neighborhoods
of x such that each neighborhood of x contains an N;. The next lemma
shows the connection between Qg and Pg.

LemMA 2. If R has a countable cofinal subsystem, if X satisfies the
first countability condition, and if the intersection of each pair of neigh-
borhoods of each point x of X contains a third neighborhood of x, then x
is a cluster point of g if and only if there exists E cofinal in R such that
x=lim g,z gr; that is, Qg=Pg.

QgD Pg with no restriction on R or X, for x=lim .,z gg and N a
neighborhood of x imply that if # ER, there exists 71 in E with r, =7
and then an 7; in E such that r,=7; and g(rs) EN. If R and X are
restricted as above and if x is a cluster point of g, there exists a se-
quence {N!} of neighborhoods of x such that each neighborhood of x
contains an N/. By the other condition there exists a decreasing se-
quence of such neighborhoods NyDON:D - - - DN;D - - - . Enumer-
ate R in a sequence {r/}; then let 7, be a point of g~(Vy) which
follows 7{ ; let 7; and 73 be points of g=!(N2) which, respectively, follow
riand 74 ; let 74, 75, 74 be points of g=1(Ns) which follow 7s, 5, and 7§,
and so on. Then E= {r;} contains a successor of every element of R’,
so is cofinal in (R’, 2) and hence cofinal in R, If N is a neighborhood
of x, there is an N;CN and there exists # such that g(r:) EN;if i =n.
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Since the set of all  which do not precede any r;, ¢ <#, is cofinal in R
and contains all successors of each of its elements, its intersection
with E is a set of the same sort in E; this shows that E has the desired
property; that is, that x=lim ,5) gr.

Note that no such relation holds for multiple sequences if the co-
final sets of R which are used are restricted as in [1] to be product
sets.

We used Lemma 1 to show that “almost everywhere” has meaning
in (; a simple application of the same proof gives the next result
which can be regarded as an extension of the lemma of [1, §3].

LeMMA 3. If R has a countable cofinal subsystem, if Eqis cofinal in R,
and if A= {EI ENE, is not cofinal in Eo} , then |A I =0; that is, almost
every E of (° meets E, in a set cofinal in R.

Let E, be a countable subset of E, cofinal in (E,, 2); then ENE,
not cofinal in E, means that there exists 7z in E; such that
ENEN\(rg)* is empty. For fixed 7 in E; let A,={E|ENEN()* is
Tmfty} ; since EMN\(r)* is infinite, |A,| =0; since 4=U,er4d,,

Al =0.

2. Cluster points. We now proceed to the analogues of the theo-
rems of [1].

THEOREM 1. If R is an index system with a countable cofinal subset, if
X satisfies the first countability condition, if g is a function from R
into X, and if x EQg, then x SQgr for almost every E of (; that s, each
cluster point of g is a cluster point of almost every gg.

x is a cluster point of g if and only if g~1(N) is cofinal in R for
every neighborhood N of ». If {N;} is an equivalent sequence of
neighborhoods of x, let 4;= {E] ENg~Y(N,) is not cofinal in g~*(N,) } ;
then, by Lemma 3, |4:| =0. Setting 4=0C—-U4,, |4]|=|C| =1.
If EEA and N is a neighborhood of x, there is an N;yC N ; since E€A4;,
ENg-Y(N,) is cofinal in g~'(N;) and hence cofinal in R. Since
ENg=Y(N)DENgY(N;), ENg~(N) is also cofinal in R and there-
fore is cofinal in (E, 2);thatis, if N is a neighborhood of x and E€EA,
g Y(N)NE is cofinal in (E, ), that is, x is a cluster point of gg if
EcA.

Limit points have an analogous property.

TrEOREM 1’. If R and X satisfy the hypotheses of Theorem 1, then
x=lim,3) g if and only if x=lim g,3, gz for almost every E in (.

If x=lim z,3) g, thenx =lim &3, gz for every Ein . If x #lim (&,2) g,
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there exists a neighborhood N of ¥ and an 7, in R such that every
n>ro has a successor 7o>71 for which g(r) &EN; let Eo= {rlg(r)
€X —N and r>ro}; then if E is so chosen that E, and E; have no
common successors and E\JE; is cofinal in R, by Lemma 3 the set
A= {E|EN(EyJE,) is cofinal in R} is of measure 1. For any such E,
ENE, is cofinal in (Eo, =) so x#limg,z) gz if EEA; that is,
x#lim g,») g implies xlim z,>, gr for almost every E in (.
Say that g is divergent if x =lim (3, g is false for every x in X.

CoroLLARY. Let X and R satisfy the conditions of the theorem
and suppose that g 1is divergent; them for each x in X the set
A= {E|x=lim(E,g) gE} is of measure zero. Hence if almost every gg
has a limit point, then Pg is uncountable.

The first statement follows immediately from the theorem. For the
second, {EIgE has a limit point} =U.epsd.; since |A,,| =0 and
| Uzep,,A,| =1, Pg is uncountable.

The next two results are related to Theorem 1’ but stronger hy-
potheses enable us to draw stronger conclusions.

THEOREM 2. If X and R satisfy the conditions of Theorem 1 and if
each pair of distinct points of X has a pasr of disjoint neighborhoods,*
then g is divergent if and only if almost every gg is divergent.

If g has the limit x, so does every gg. If g is divergent, by the corol-
lary |Az| =0 for every x. By the first statement in the proof of
Lemma 2, if x1=1im (g5, g&1, then x1 is a cluster point of g; by Theo-
rem 1, x;isa cluster point of almost every gz. Let A = {EI xi#lim g, ) g
but gz has a limit point}. If Eisin 4, let x=lim (g3, gz; since there
exist disjoint neighborhoods N; of x1 and N of x and since gg plunges
eventually into N, there is an 7; in E such that ge(r)&EN: if r>n
and &€ E. Hence gz (IVy) is not cofinal in (E, ), so %1 is not a cluster
point of gz when E€A. Hence | 4| =0 by Theorem 1; since |4, =0
also, we see that | { E|gg has a limit}| =|4]| +|4.]| =0.

Buck notes that the proof of Theorem 1’ can easily be modified to

prove another theorem with the same conclusion as that of Theo-
rem 2.

THEOREM 2'. If R has a countable cofinal subset and if X satisfies
Hausdorff's second countability condition,® then g is divergent if and only
if almost every gg is divergent.

¢ This is the separation condition in a Hausdorff space; however X need not satisfy
the other axioms of such a space.

5 In this system the second countability condition becomes: There exists a count-
able subset {N;} of subsets of X such that for each «x and each neighborhood N of
there is an ¢ such that NV; contains a neighborhood of x and N;CN.
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LEMMA 4. If every neighborhood N of x contains a neighborhood N'
of x such that for every y in N’ there is a neighborhood Ny of y with
N,CN, then Qg is closed in X.

If x is in the closure of Qg, then for every neighborhood N of %
there is a point vy in N'NQg; then for every 7o in R there exists
rnro such that g(r) EN,CN so xEQg.

THEOREM 3. If R and X satisfy the hypotheses of Theorem 1 and
Lemma 4, and if Qg is separable, then Qg = Qgg for almost every E in (°.

Take a countable dense subset X’ of Qg and follow the proof of
Theorem 3 of [1], using Theorem 1 and Lemma 4 at the appropriate
points. This is much stronger than the corresponding theorem of [1];
the principal extension is that this formulation is valid for all essen-
tially countable index systems rather than for the integers alone. In
case R is the system of integers, this result includes that of [1] since
the hypotheses of [1, Theorem 3] imply the hypotheses of Theorem 1
and Lemmas 2 and 4; Theorems 1 and 2 are not generalizations of the
corresponding results of [1] but rather are generalizations in a slightly
different direction from the case #=1 of those theorems.

Note that a metric space satisfies all the hypotheses on X except
that on Qg in Theorem 3; there the requirement that X is separable
would be a sufficient additional condition. Hence with X metric and
R having a countable cofinal subset, the set Qg used in this paper is
equal to the set Pg analogous to Px of [1]. Any countable index sys-
tem will do for R as will the system of real numbers ordered by mag-
nitude or the system of #-tuples of real numbers ordered by
(@, * + +, an)=(by, - - -, by) if a;=0b; for all 2=<%n. Another such sys-
tem is the system of n-tuples (71, - - -, 7.») where 7;ER;, an index
system with a countable cofinal subset, and where (r1, - - -, 74)
>, -, rd)ifry>r! orri=r{ and r,>7{ or, for some j<n,r;=r!
for ¢ <j while 7;>7/. (This is the so-called ordinal or lexicographic
product of the systems R;.) Still another example is the system of
pairs of integers where (41, 42) 2 (j1, jo) means that 4; =14, and j1 = j.

It may be noted by means of Lemmas 1 and 3 that the proofs of
Theorems 1 and 2 of [1] also hold when the set IXIX - - - XI used
in [1] as the domain of the function x=x[41, 43, + + -, 4] is replaced
by RiXReX - - - XRn, where the R; are any index systems with
countable cofinal subsystems, providing that & is then defined as
CiX(CeX « ¢+ X(Cn where (; is the family of cofinal subsets of R.
The theorems thus obtained almost include the corresponding results
of both papers, the case n=1 giving analogues of the present theorems
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with stronger hypotheses, the case where all R;= I giving those of [1].

An open question is whether the existence of a countable cofinal
subset is needed to derive the conclusions of Lemmas 1 and 3; if not,
some weakening of the hypotheses of the theorems would be possible.
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