
CLUSTER POINTS OF SUBSEQUENCES1 

M. M. DAY 

In the preceding paper [ l ] 2 Buck defines a class of "subsequences" 
of a multiple sequence and shows that "almost all" of such subse­
quences have certain properties. This note is essentially based on a 
different choice of the definition of "subsequences" ; that is, this paper 
and [ l ] are generalizations in different directions of a preceding pa­
per by Buck and Pollard (reference 2 of [l ]). In this discussion counta-
bility is the important property of the index systems such as the 
integers underlying the simple sequences or the ^-tuples of integers 
underlying the multiple sequences. Countability is a slightly stronger 
condition than is necessary since the results will be shown to hold as 
well for functions of n variables as for multiple sequences ; some other 
special cases are mentioned at the end of this paper. Also I modify 
Buck's approach by considering cluster points in neighborhood spaces 
rather than limit points in convergence spaces [3]. It may be men­
tioned that even for multiple sequences Theorems 1 and 2 of these 
papers are independent since Buck's set of "subsequences" is a set 
of measure zero in the set of "subsequences" considered here; my 
Theorem 3 contains the corresponding theorem of [ l ] as a special 
case. Lemma 1 and its corollary, Lemma 3, are the fundamental re­
sults on which the theorems rest ; Lemma 3 is the generalization ap­
propriate to this paper of the lemma in §3 of [ l ] . 

1. Preliminaries. If R is any set, a product measure can be defined 
in the set of characteristic functions of subsets of R [l, footnote 2] 
and this in turn induces a measure | • • • | for subsets of the set £ 
of all subsets E of R; this measure is non-negative, completely addi­
tive, and (if R is infinite) takes all values between 0 and 1 inclusive; 
its other principal characteristic is that if n, • • • , rkGRf then8 

{JE| no r » £ E J is of measure 2~*; hence if E0 is an infinite subset 
of Rand A = {E\EnE0is empty}, \A\ = 0. 

An index system ^ = (iî, è ) is a set R and a binary relation è such 
that ^ is transitive and every element r0 has a successor fi>r0 such 
that r 0 >r i . (In the language of [4] 2^ is oriented and has no terminal 
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1 Considerations suggested by the preceding paper of R. C. Buck. 
2 Numbers in brackets refer to the Bibliography at the end of the paper. 
8 The usual notation of ^J and C\ will be used for union and intersection of sets; 

{p\P} will mean the set of all p having the property P. 
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elements.) A set E in 2^ is called cofinal in ^ if for every r in R there 
exists r'^r with r' in E. Let £*== {r\r }£some r' in E). 

Note that if %, is the system of integers ordered by magnitude, then 
the cofinal subsets of % are the infinite subsets ; for g defined on a gen­
eral index system ^ it is clear that reducing the domain of definition 
of g to a cofinal subset E of 3^ is a generalization of the process of se­
lecting a subsequence in case ^ is the system of integers. 

A subsystem %! = {R\ è ) of ^ = ( i ? , è ) is a subset R' of R with 
the order relation between points of Rf defined by that in R\ if Rf 

is cofinal in the index system 2^, then (R', ^ ) is also an index system. 
Cofinality is transitive in a transitive system ; that is, if Rf is cofinal 
in (R, ^ ) and R" is cofinal in (R', è ) , then R" is cofinal in (R, £ ) . 

We may note that if ^ is the set of w-tuples of integers (the case 
studied in [l ]), where (ih • • • , in) à O'i» " * ' »in) if and only if ik^jk 
for every k^ny then the product subsets defined by Buck are cofinal 
in ^ but are very sparsely distributed in the set of all cofinal subsets 
of 2^; to be precise, such sets form a set of measure 0 if n è 2. A product 
set in the set of w-tuples of integers, R—IXIX • • • XI, is a set of 
the form EiXE2X • • • XEn, EtC.I; these product sets define the 
class of "subsequences" used by Buck. If Ek is the set of elements of R 
with all coordinates not greater than k and if A k is the class of all 
subsets E of R such that EC\Ek is a product set in Ek, then A*=ClkAk. 
I t is easily seen that if E'CEk, {E\Er\Eh = E'} is of measure 2"**; 
since there are (2k — l)n + K2nk product sets in Ek, it follows that 
\Ak\ <2"*-*"; if n^2, this tends to zero as k increases so \A\ = 0 . 

LEMMA 1. If% has a countable cofinal subset and Q is the set of all 
cofinal subsets of 2^, then \Q\ = 1. 

Let R' be a countable cofinal subset of ^ and suppose EQUQ; then 
there exists r in R such that ( r ) * n £ is empty. Since there exists r' 
in R' such that r'^r, it follows that 0 ' ) * ' ° ^ is empty. Since rf has an 
infinite number of distinct successors in R', the set Ar> = \E\ (Y')*C\E 
is empty} is of measure zero. Since 6 — Q= \)r>çzR>Ar'} \ £> — Q\ = 0 so 

lel=i-
By means of this lemma we can define a measure in Q by taking 

the measure in 6 of elements of Q\ since | Q\ = 1, we can talk meaning­
fully about almost all cofinal subsets of ^ [5, Theorem 1.1 ]. Note 
that cofinality of E is not affected by adding or removing a finite 
set, so Q is a "homogeneous" subset of £ and therefore if it is measur­
able must have measure 0 or 1 ; which case occurs when î^ does not 
have a countable cofinal subset, I do not know. 

X is a neighborhood space [3] if for each x in X is defined a non-
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empty family of subsets of X, the neighborhoods of x. If g is a func­
tion defined on an index system ^ with values in a neighborhood 
space X, x is a limit point of g (symbol : x = lim {R^ g) if for each neigh­
borhood N of x and every r0 in R there exists n ^ r0 such that g(r) £ iV 
whenever r ^ r i . (This definition is due to Alaoglu and Birkhoff [2]; 
in case ^ is directed it reduces to the standard simpler form: 
x=lim (jR,£) g if for each iV there exists /> in i? such that g(r) £ iV when­
ever r è r # . ^ is directed if every pair of elements has a common suc­
cessor.) A point x is called a cluster point of g if for every neighborhood 
Noî x and every r0 in i? there exists n^ro such that g(ri)£iV. Clearly 
every limit point of g is a cluster point of g, but not conversely. (See 
Lemma 2 below.) If g is a function from 3^ into X and £ is a cofinal 
subset of 3^, let gE be the function g reduced onto E and let QgE be 
the set of cluster points of gE) the function gE and the set QgE will 
play a role here analogous to that played by the subsequence x' and 
the set Px' in [ l ] . Clearly # = lim(jB,£) g implies x — Xim^E^) gs for 
every E cofinal in 3^. Let Pgs be the set of limit points of functions 
gE' for E' cofinal in E\ that is, xÇJ?gE if and only if there exists E ' 
cofinal in (E, è ) such that # = lim<#',£) g£'. 

Recall that X is said to satisfy Hausdorff's first countability condi­
tion if for each x in X there is a countable set {iV*} of neighborhoods 
of x such that each neighborhood of x contains an Ni. The next lemma 
shows the connection between Qg and Pg. 

LEMMA 2. If 3^ ftas a countable cofinal subsystem, if X satisfies the 
first countability condition, and if the intersection of each pair of neigh­
borhoods of each point x of X contains a third neighborhood of x, then x 
is a cluster point of g if and only if there exists E cofinal in 3^ such that 
tf = lim(#,£) gE; that isy Qg-Pg. 

QgDPg with no restriction on 3^ or X, for x*=liwnE,%) gE and N a 
neighborhood of x imply that if r£2? , there exists n in E with f i ^ r 
and then an n in E such that r^r% and g{ri)ÇiN. If 3^ and X are 
restricted as above and if x is a cluster point of g, there exists a se­
quence {Ni } of neighborhoods of x such that each neighborhood of x 
contains an N/. By the other condition there exists a decreasing se­
quence of such neighborhoods NiZ)N2D • • • D i V O • • • . Enumer­
ate R in a sequence {rj } ; then let ri be a point of g^C^i) which 
follows r( ; let r* and ra be points of g~\N^) which, respectively, follow 
r 1 and ri ; let r4, r6, r6 be points of g^iNs) which follow f2, fa, and r / , 
and so on. Then E~ {r^ contains a successor of every element of 2?', 
so is cofinal in (I?', ^ ) and hence cofinal in % If N is a neighborhood 
of x, there is an NjQN and there exists ft such that g(r*) £«Afy if i ^ w. 
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Since the set of all r which do not precede any r%, i <n, is cofinal in R 
and contains all successors of each of its elements, its intersection 
with E is a set of the same sort in E; this shows that E has the desired 
property; that is, that # = lim<#,£) gs. 

Note that no such relation holds for multiple sequences if the co-
final sets of 5^ which are used are restricted as in [l ] to be product 
sets. 

We used Lemma 1 to show that "almost everywhere" has meaning 
in Q; a simple application of the same proof gives the next result 
which can be regarded as an extension of the lemma of [l, §3]. 

LEMMA 3. If % has a countable cofinal subsystem, if Eo is cofinal in % 
and if A = {E \ EC\E0 is not cofinal in £o}, then \A\ = 0 ; that is, almost 
every E of Q meets E0ina set cofinal in % 

Let Ei be a countable subset of Eo cofinal in (Eo, è ) ; then EP\£0 

not cofinal in £ 0 means that there exists rE in Ei such that 
Er\E0n(rE)* is empty. For fixed r in Ei let Ar= { E | £ n E 0 n ( r ) * is 
empty}; since E0n(r)* is infinite, \Ar\ =0; since A^\Jr^SiAri 

|il 1-0. 

2. Cluster points. We now proceed to the analogues of the theo­
rems of [ l] . 

THEOREM l.If^isan index system with a countable cofinal subset, if 
X satisfies the first countability condition, if g is a function from î^ 
into X, and ifx^Qg, then xÇzQgnfor almost every E of Q; that is, each 
cluster point of g is a cluster point of almost every gE. 

x is a cluster point of g if and only if g~l(N) is cofinal in %, for 
every neighborhood N of x. If {Ni} is an equivalent sequence of 
neighborhoods of x, let A< = {£| Er\g~l(Ni) is not cofinal in g^iNi)} ; 
then, by Lemma 3, \Ai\ = 0. Setting A=Q-\)iAi, \A\ = |è l = 1 -
If EÇ.A and N is a neighborhood of x,'there is an NiQN; since EQAi, 
Er\g"1(Ni) is cofinal in g^iNî) and hence cofinal in $(. Since 
ErirliN)DErirlWi), EHg-^N) is also cofinal in ^ and there­
fore is cofinal in (£, ^ ) ; that is, if N is a neighborhood of x and EGA, 
g-^iNOHE is cofinal in (£, ^ ) , that is, x is a cluster point of gE if 
EGA. 

Limit points have an analogous property. 

THEOREM 1'. If%,and X satisfy the hypotheses of Theorem 1, then 
a: = lim(i2,£) g if and only if # = lim <!?,£) gE for almost every £ in Q. 

Ux = lim (jB,£) g, then x = Hm (^,è) gE for every £ in Q. If x ^lim {R, %)g, 
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there exists a neighborhood N of x and an r0 in ^ such that every 
ri>r0 has a successor f2>^i for which g(r2)$iV; let £ 0 = (HsM 
Ç£X — N and r>r 0 } î then if £1 is so chosen that £o and £1 have no 
common successors and EJ<JEi is cofinal in ^ by Lemma 3 the set 
4̂ = {E\ £n(£oU-Ei) is cofinal in ^ } is of measure 1. For any such E, 

£ H £ 0 is cofinal in (Eo, è ) so x^lim^^) gs if £G^4; that is, 
tfF*lim(/e,£) g implies ^^lim^,^) gE for almost every £ in Q. 

Say that g is divergent if # = lim(je,è) g is false for every # in X. 

COROLLARY. Let X and 5^ satisfy the conditions of the theorem 
and suppose that g is divergent; then for each x in X the set 
Ax — {E\x = limiE,^) gs} is of measure zero. Hence if almost every gs 
has a limit point, then Pg is uncountable. 

The first statement follows immediately from the theorem. For the 
second, {£|g# has a limit point} = [)x^p0Ax; since |-4s| =0 and 
| [)X£.pgAx\ = 1, Pg is uncountable. 

The next two results are related to Theorem 1' but stronger hy­
potheses enable us to draw stronger conclusions. 

THEOREM 2. If X and ^ satisfy the conditions of Theorem 1 and if 
each pair of distinct points of X has a pair of disjoint neighborhoods,41 

then g is divergent if and only if almost every gE is divergent. 

If g has the limit x, so does every gE» If g is divergent, by the corol­
lary \AX\ = 0 for every x. By the first statement in the proof of 
Lemma 2, if xi = lim(^i,^) gEu then xi is a cluster point of g ; by Theo­
rem l,#i is a cluster point of almost every gs. Let A — {E\x\7^\\m{Et^)gE 
but gE has a limit point}. If E is in A, let tf = lim(#,£) gs; since there 
exist disjoint neighborhoods JVi of x\ and N of x and since gE plunges 
eventually into N, there is an n in E such that gE(r)^Ni if r>n 
and rtEE. Hence gÈ~~l(Ni) is not cofinal in (E, ££), so Xi is not a cluster 
point of gE when E Ç£A. Hence \A\ == 0 by Theorem 1 ; since | A Xl | = 0 
also, we see that | \E\gE has a limit} | = |-4| +1-4^1 =0. 

Buck notes that the proof of Theorem 1' can easily be modified to 
prove another theorem with the same conclusion as that of Theo­
rem 2. 

THEOREM 2'. If <Ĵ  has a countable cofinal subset and if X satisfies 
Hausdorff's second countability condition,* then g is divergent if and only 
if almost every gE is divergent. 

4 This is the separation condition in a Hausdorff space; however X need not satisfy 
the other axioms of such a space. 

5 In this system the second countability condition becomes: There exists a count­
able subset {Ni} of subsets of X such that for each x and each neighborhood N of x 
there is an i such that Ni contains a neighborhood of x and NiCZN. 

file:///E/gE


1944] CLUSTER POINTS OF SUBSEQUENCES 403 

LEMMA 4. If every neighborhood N of x contains a neighborhood Nf 

of x such that for every y in N' there is a neighborhood Ny of y with 
NydN, then Qg is closed in X. 

If x is in the closure of Qg, then for every neighborhood N of x 
there is a point y in NT\Qg\ then for every r0 in R there exists 
ri^ro such that g(ri)SNyCN so x£.Qg. 

THEOREM 3. If ^ and X satisfy the hypotheses of Theorem 1 and 
Lemma 4, and if Qg is separable, then Qg = QgEfor almost every E in Q. 

Take a countable dense subset X' of Qg and follow the proof of 
Theorem 3 of [ l ] , using Theorem 1 and Lemma 4 at the appropriate 
points. This is much stronger than the corresponding theorem of [ l ] ; 
the principal extension is that this formulation is valid for all essen­
tially countable index systems rather than for the integers alone. In 
case ^ is the system of integers, this result includes that of [ l ] since 
the hypotheses of [l, Theorem 3] imply the hypotheses of Theorem 1 
and Lemmas 2 and 4; Theorems 1 and 2 are not generalizations of the 
corresponding results of [l ] but rather are generalizations in a slightly 
different direction from the case n = 1 of those theorems. 

Note that a metric space satisfies all the hypotheses on X except 
that on Qg in Theorem 3 ; there the requirement that X is separable 
would be a sufficient additional condition. Hence with X metric and 
^ having a countable cofinal subset, the set Qg used in this paper is 
equal to the set Pg analogous to Px of [l ]. Any countable index sys­
tem will do for % as will the system of real numbers ordered by mag­
nitude or the system of w-tuples of real numbers ordered by 
(ai, • • • , a»)è(&i, * * * , bn) if a^bi for all i^n. Another such sys­
tem is the system of n-tuples (ri, • • • , rn) where u&Rj, an index 
system with a countable cofinal subset, and where (ri, • • • , rn) 
>(ri, - - - ,rn)\lri>r{ orr\ — r{ andr 2 >r 2 ' or, for somej^w, r< = r/ 
for i<j while rj>rj. (This is the so-called ordinal or lexicographic 
product of the systems 3^-.) Still another example is the system of 
pairs of integers where (ii, i%) ^ (ji> h) means that ii~H and j i^J2 . 

I t may be noted by means of Lemmas 1 and 3 that the proofs of 
Theorems 1 and 2 of [ l ] also hold when the set I X I X • • • X I used 
in [ l ] as the domain of the function x = x[ii, H, • • • , in] is replaced 
by ^ î X Î ^ X • • • X^ln, where the ^ are any index systems with 
countable cofinal subsystems, providing that © is then defined as 
C1XC2X • • • XQn where & is the family of cofinal subsets of 21». 
The theorems thus obtained almost include the corresponding results 
of both papers, the case n = 1 giving analogues of the present theorems 
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with stronger hypotheses, the case where all ^ = I giving those of [l ]. 
An open question is whether the existence of a countable cofxnal 

subset is needed to derive the conclusions of Lemmas 1 and 3 ; if not, 
some weakening of the hypotheses of the theorems would be possible. 
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