CLUSTER POINTS OF SUBSEQUENCES¹

M. M. DAY

In the preceding paper [1]² Buck defines a class of "subsequences" of a multiple sequence and shows that "almost all" of such subsequences have certain properties. This note is essentially based on a different choice of the definition of "subsequences"; that is, this paper and [1] are generalizations in different directions of a preceding paper by Buck and Pollard (reference 2 of [1]). In this discussion countability is the important property of the index systems such as the integers underlying the simple sequences or the n-tuples of integers underlying the multiple sequences. Countability is a slightly stronger condition than is necessary since the results will be shown to hold as well for functions of n variables as for multiple sequences; some other special cases are mentioned at the end of this paper. Also I modify Buck's approach by considering cluster points in neighborhood spaces rather than limit points in convergence spaces [3]. It may be mentioned that even for multiple sequences Theorems 1 and 2 of these papers are independent since Buck's set of "subsequences" is a set of measure zero in the set of "subsequences" considered here; my Theorem 3 contains the corresponding theorem of [1] as a special case. Lemma 1 and its corollary, Lemma 3, are the fundamental results on which the theorems rest; Lemma 3 is the generalization appropriate to this paper of the lemma in §3 of [1].

1. Preliminaries. If R is any set, a product measure can be defined in the set of characteristic functions of subsets of R [1, footnote 2] and this in turn induces a measure $|\cdot\cdot\cdot|$ for subsets of the set \mathcal{E} of all subsets E of R; this measure is non-negative, completely additive, and (if R is infinite) takes all values between 0 and 1 inclusive; its other principal characteristic is that if $r_1, \cdot\cdot\cdot, r_k \in R$, then $\{E \mid \text{no } r_i \in E\}$ is of measure 2^{-k} ; hence if E_0 is an infinite subset of R and $A = \{E \mid E \cap E_0 \text{ is empty}\}$, |A| = 0.

An index system $\mathbb{R} = (R, \geq)$ is a set R and a binary relation \geq such that \geq is transitive and every element r_0 has a successor $r_1 > r_0$ such that $r_0 \gg r_1$. (In the language of $\lceil 4 \rceil \Re$ is oriented and has no terminal

Presented to the Society, April 29, 1944; received by the editors December 13, 1943.

¹ Considerations suggested by the preceding paper of R. C. Buck.

² Numbers in brackets refer to the Bibliography at the end of the paper.

The usual notation of \bigcup and \bigcap will be used for union and intersection of sets; $\{p \mid P\}$ will mean the set of all p having the property P.

elements.) A set E in R is called *cofinal* in R if for every r in R there exists $r' \ge r$ with r' in E. Let $E^* = \{r \mid r \ge \text{some } r' \text{ in } E\}$.

Note that if R is the system of integers ordered by magnitude, then the cofinal subsets of R are the infinite subsets; for g defined on a general index system R it is clear that reducing the domain of definition of g to a cofinal subset E of R is a generalization of the process of selecting a subsequence in case R is the system of integers.

A subsystem $\mathcal{R}' = (R', \geq)$ of $\mathcal{R} = (R, \geq)$ is a subset R' of R with the order relation between points of R' defined by that in R; if R' is cofinal in the index system R, then (R', \geq) is also an index system. Cofinality is transitive in a transitive system; that is, if R' is cofinal in (R, \geq) and R'' is cofinal in (R, \geq) , then R'' is cofinal in (R, \geq) .

We may note that if \mathcal{R} is the set of n-tuples of integers (the case studied in [1]), where $(i_1, \dots, i_n) \geq (j_1, \dots, j_n)$ if and only if $i_k \geq j_k$ for every $k \leq n$, then the product subsets defined by Buck are cofinal in \mathcal{R} but are very sparsely distributed in the set of all cofinal subsets of \mathcal{R} ; to be precise, such sets form a set of measure 0 if $n \geq 2$. A product set in the set of n-tuples of integers, $R = I \times I \times \dots \times I$, is a set of the form $E_1 \times E_2 \times \dots \times E_n$, $E_i \subset I$; these product sets define the class of "subsequences" used by Buck. If E_k is the set of elements of R with all coordinates not greater than k and if A_k is the class of all subsets E of R such that $E \cap E_k$ is a product set in E_k , then $A = \bigcap_k A_k$. It is easily seen that if $E' \subset E_k$, $\{E \mid E \cap E_k = E'\}$ is of measure 2^{-k^n} ; since there are $(2^k-1)^n+1<2^{nk}$ product sets in E_k , it follows that $|A_k| < 2^{nk-k^n}$; if $n \geq 2$, this tends to zero as k increases so |A| = 0.

LEMMA 1. If \mathbb{R} has a countable cofinal subset and \mathbb{C} is the set of all cofinal subsets of \mathbb{R} , then $|\mathbb{C}| = 1$.

Let R' be a countable cofinal subset of \mathcal{R} and suppose $E \notin \mathcal{C}$; then there exists r in R such that $(r)^* \cap E$ is empty. Since there exists r' in R' such that $r' \ge r$, it follows that $(r')^* \cap E$ is empty. Since r' has an infinite number of distinct successors in R', the set $A_{r'} = \{E \mid (r')^* \cap E \text{ is empty}\}$ is of measure zero. Since $\mathcal{E} - \mathcal{C} = \bigcup_{r' \in R'} A_{r'}, \mid \mathcal{E} - \mathcal{C} \mid = 0$ so $\mid \mathcal{C} \mid = 1$.

By means of this lemma we can define a measure in \mathcal{C} by taking the measure in \mathcal{E} of elements of \mathcal{C} ; since $|\mathcal{C}| = 1$, we can talk meaningfully about almost all cofinal subsets of \mathcal{R} [5, Theorem 1.1]. Note that cofinality of E is not affected by adding or removing a finite set, so \mathcal{C} is a "homogeneous" subset of \mathcal{E} and therefore if it is measurable must have measure 0 or 1; which case occurs when \mathcal{R} does not have a countable cofinal subset, I do not know.

X is a neighborhood space [3] if for each x in X is defined a non-

empty family of subsets of X, the neighborhoods of x. If g is a function defined on an index system R with values in a neighborhood space X, x is a *limit point* of g (symbol: $x = \lim_{(R, \geq)} g$) if for each neighborhood N of x and every r_0 in R there exists $r_1 \ge r_0$ such that $g(r) \in N$ whenever $r \ge r_1$. (This definition is due to Alaoglu and Birkhoff |2|; in case R is directed it reduces to the standard simpler form: $x = \lim_{(R, \geq)} g$ if for each N there exists r_N in R such that $g(r) \in N$ whenever $r \ge r_N$. R is directed if every pair of elements has a common successor.) A point x is called a *cluster point* of g if for every neighborhood N of x and every r_0 in R there exists $r_1 \ge r_0$ such that $g(r_1) \in N$. Clearly every limit point of g is a cluster point of g, but not conversely. (See Lemma 2 below.) If g is a function from \mathbb{R} into X and E is a cofinal subset of \mathcal{R} , let g_E be the function g reduced onto E and let Qg_E be the set of cluster points of g_E ; the function g_E and the set Qg_E will play a role here analogous to that played by the subsequence x' and the set Px' in [1]. Clearly $x = \lim_{(R, \geq)} g$ implies $x = \lim_{(E, \geq)} g_E$ for every E cofinal in R. Let Pg_E be the set of limit points of functions $g_{E'}$ for E' cofinal in E; that is, $x \in Pg_E$ if and only if there exists E' cofinal in (E, \geq) such that $x = \lim_{(E', \geq)} g_{E'}$.

Recall that X is said to satisfy Hausdorff's first countability condition if for each x in X there is a countable set $\{N_i\}$ of neighborhoods of x such that each neighborhood of x contains an N_i . The next lemma shows the connection between Q_g and P_g .

LEMMA 2. If \mathbb{R} has a countable cofinal subsystem, if X satisfies the first countability condition, and if the intersection of each pair of neighborhoods of each point x of X contains a third neighborhood of x, then x is a cluster point of g if and only if there exists E cofinal in \mathbb{R} such that $x = \lim_{E \to \mathbb{R}} \mathbb{E}$; that is, Qg = Pg.

 $Qg \supset Pg$ with no restriction on \Re or X, for $x = \lim_{(E, \ge)} g_E$ and N a neighborhood of x imply that if $r \in \mathbb{R}$, there exists r_1 in E with $r_1 \ge r$ and then an r_2 in E such that $r_2 \ge r_1$ and $g(r_2) \in \mathbb{N}$. If \Re and X are restricted as above and if x is a cluster point of g, there exists a sequence $\{N_i'\}$ of neighborhoods of x such that each neighborhood of x contains an N_i' . By the other condition there exists a decreasing sequence of such neighborhoods $N_1 \supset N_2 \supset \cdots \supset N_i \supset \cdots$. Enumerate R in a sequence $\{r_i'\}$; then let r_1 be a point of $g^{-1}(N_1)$ which follows r_1' ; let r_2 and r_3 be points of $g^{-1}(N_2)$ which, respectively, follow r_1 and r_2' ; let r_4 , r_5 , r_6 be points of $g^{-1}(N_3)$ which follow r_2 , r_3 , and r_3' , and so on. Then $E = \{r_i\}$ contains a successor of every element of R', so is cofinal in (R', \ge) and hence cofinal in \Re . If N is a neighborhood of x, there is an $N_i \subset N$ and there exists n such that $g(r_i) \in N_i$ if $i \ge n$.

Since the set of all r which do not precede any r_i , i < n, is cofinal in R and contains all successors of each of its elements, its intersection with E is a set of the same sort in E; this shows that E has the desired property; that is, that $x = \lim_{E \to \infty} g_E$.

Note that no such relation holds for multiple sequences if the cofinal sets of R which are used are restricted as in [1] to be product sets.

We used Lemma 1 to show that "almost everywhere" has meaning in C; a simple application of the same proof gives the next result which can be regarded as an extension of the lemma of [1, §3].

LEMMA 3. If \mathbb{R} has a countable cofinal subsystem, if E_0 is cofinal in \mathbb{R} , and if $A = \{E \mid E \cap E_0 \text{ is not cofinal in } E_0\}$, then |A| = 0; that is, almost every E of \mathcal{C} meets E_0 in a set cofinal in \mathbb{R} .

Let E_1 be a countable subset of E_0 cofinal in (E_0, \geq) ; then $E \cap E_0$ not cofinal in E_0 means that there exists r_E in E_1 such that $E \cap E_0 \cap (r_E)^*$ is empty. For fixed r in E_1 let $A_r = \{E \mid E \cap E_0 \cap (r)^*$ is empty $\{E_0, E_0 \cap (r)^*\}$; since $E_0 \cap (r)^*$ is infinite, $|A_r| = 0$; since $|A_r| = 0$.

2. Cluster points. We now proceed to the analogues of the theorems of [1].

THEOREM 1. If R is an index system with a countable cofinal subset, if X satisfies the first countability condition, if g is a function from R into X, and if $x \in Qg$, then $x \in Qg_E$ for almost every E of C; that is, each cluster point of g is a cluster point of almost every g_E .

x is a cluster point of g if and only if $g^{-1}(N)$ is cofinal in \mathcal{R} for every neighborhood N of x. If $\{N_i\}$ is an equivalent sequence of neighborhoods of x, let $A_i = \{E \mid E \cap g^{-1}(N_i) \text{ is not cofinal in } g^{-1}(N_i)\}$; then, by Lemma 3, $|A_i| = 0$. Setting $A = \mathcal{C} - \bigcup_i A_i$, $|A| = |\mathcal{C}| = 1$. If $E \subset A$ and N is a neighborhood of x, there is an $N_i \subset N$; since $E \subset A_i$, $E \cap g^{-1}(N_i)$ is cofinal in $g^{-1}(N_i)$ and hence cofinal in $g^{-1}(N_i) \subset E \cap g^{-1}(N_i)$. Since $g^{-1}(N_i) \subset E \cap g^{-1}(N_i)$ is also cofinal in $g^{-1}(N_i) \subset E \cap g^{-1}(N_i)$. That is, if $g^{-1}(N_i) \subset E \cap g^{-1}(N_i)$ is a neighborhood of $g^{-1}(N_i) \subset E \cap g^{-1}(N_i)$. That is, $g^{-1}(N_i) \subset E \cap g^{-1}(N_i)$ is cofinal in $g^{-1}(N_i) \subset E \cap g^{-1}(N_i)$. That is, $g^{-1}(N_i) \subset E \cap g^{-1}(N_i)$ is cofinal in $g^{-1}(N_i) \subset E \cap g^{-1}(N_i)$.

Limit points have an analogous property.

THEOREM 1'. If \mathbb{R} and X satisfy the hypotheses of Theorem 1, then $x = \lim_{(\mathbb{R}, \geq)} g$ if and only if $x = \lim_{(\mathbb{R}, \geq)} g$ for almost every E in \mathbb{C} .

If $x = \lim_{(R, \geq)} g$, then $x = \lim_{(E, \geq)} g_E$ for every E in C. If $x \neq \lim_{(R, \geq)} g$,

there exists a neighborhood N of x and an r_0 in \mathbb{R} such that every $r_1 > r_0$ has a successor $r_2 > r_1$ for which $g(r_2) \oplus N$; let $E_0 = \{r \mid g(r) \in X - N \text{ and } r > r_0\}$; then if E_1 is so chosen that E_0 and E_1 have no common successors and $E_0 \cup E_1$ is cofinal in \mathbb{R} , by Lemma 3 the set $A = \{E \mid E \cap (E_0 \cup E_1) \text{ is cofinal in } \mathbb{R}\}$ is of measure 1. For any such $E_1 \cap E_2 \cap E_3$ is cofinal in $E_2 \cap E_3 \cap E_4$; that is, $x \neq \lim_{R \to \infty} g \text{ implies } x \neq \lim_{R \to \infty} g \text{ for almost every } E \text{ in } C$.

Say that g is divergent if $x = \lim_{(R, \ge)} g$ is false for every x in X.

COROLLARY. Let X and R satisfy the conditions of the theorem and suppose that g is divergent; then for each x in X the set $A_x = \{E \mid x = \lim_{(E, \ge)} g_E\}$ is of measure zero. Hence if almost every g_E has a limit point, then Pg is uncountable.

The first statement follows immediately from the theorem. For the second, $\{E \mid g_E \text{ has a limit point}\} = \bigcup_{x \in P_g} A_x$; since $|A_x| = 0$ and $|\bigcup_{x \in P_g} A_x| = 1$, P_g is uncountable.

The next two results are related to Theorem 1' but stronger hypotheses enable us to draw stronger conclusions.

THEOREM 2. If X and \mathbb{R} satisfy the conditions of Theorem 1 and if each pair of distinct points of X has a pair of disjoint neighborhoods, then g is divergent if and only if almost every g_E is divergent.

If g has the limit x, so does every g_E . If g is divergent, by the corollary $|A_x| = 0$ for every x. By the first statement in the proof of Lemma 2, if $x_1 = \lim_{(E_1, \ge)} g_{E_1}$, then x_1 is a cluster point of g; by Theorem 1, x_1 is a cluster point of almost every g_E . Let $A = \{E \mid x_1 \ne \lim_{(E, \ge)} g_E$ but g_E has a limit point $\}$. If E is in A, let $x = \lim_{(E, \ge)} g_E$; since there exist disjoint neighborhoods N_1 of x_1 and N of x and since g_E plunges eventually into N, there is an r_1 in E such that $g_E(r) \oplus N_1$ if $r > r_1$ and $r \in E$. Hence $g_E^{-1}(N_1)$ is not cofinal in (E, \ge) , so x_1 is not a cluster point of g_E when $E \in A$. Hence |A| = 0 by Theorem 1; since $|A_{x_1}| = 0$ also, we see that $|\{E \mid g_E \text{ has a limit}\}| = |A| + |A_{x_1}| = 0$.

Buck notes that the proof of Theorem 1' can easily be modified to prove another theorem with the same conclusion as that of Theorem 2.

THEOREM 2'. If \mathbb{R} has a countable cofinal subset and if X satisfies Hausdorff's second countability condition, then g is divergent if and only if almost every g_E is divergent.

⁴ This is the separation condition in a Hausdorff space; however X need not satisfy the other axioms of such a space.

⁵ In this system the second countability condition becomes: There exists a countable subset $\{N_i\}$ of subsets of X such that for each x and each neighborhood N of x there is an i such that N_i contains a neighborhood of x and $N_i \subset N$.

Lemma 4. If every neighborhood N of x contains a neighborhood N' of x such that for every y in N' there is a neighborhood N_y of y with $N_y \subset N$, then Qg is closed in X.

If x is in the closure of Qg, then for every neighborhood N of x there is a point y in $N' \cap Qg$; then for every r_0 in R there exists $r_1 \ge r_0$ such that $g(r_1) \in N_y \subset N$ so $x \in Qg$.

THEOREM 3. If R and X satisfy the hypotheses of Theorem 1 and Lemma 4, and if Qg is separable, then $Qg = Qg_E$ for almost every E in C.

Take a countable dense subset X' of Qg and follow the proof of Theorem 3 of [1], using Theorem 1 and Lemma 4 at the appropriate points. This is much stronger than the corresponding theorem of [1]; the principal extension is that this formulation is valid for all essentially countable index systems rather than for the integers alone. In case R is the system of integers, this result includes that of [1] since the hypotheses of [1, Theorem 3] imply the hypotheses of Theorem 1 and Lemmas 2 and 4; Theorems 1 and 2 are not generalizations of the corresponding results of [1] but rather are generalizations in a slightly different direction from the case n=1 of those theorems.

Note that a metric space satisfies all the hypotheses on X except that on Qg in Theorem 3; there the requirement that X is separable would be a sufficient additional condition. Hence with X metric and \mathbb{R} having a countable cofinal subset, the set Qg used in this paper is equal to the set Pg analogous to Px of [1]. Any countable index system will do for \mathbb{R} as will the system of real numbers ordered by magnitude or the system of n-tuples of real numbers ordered by $(a_1, \dots, a_n) \geq (b_1, \dots, b_n)$ if $a_i \geq b_i$ for all $i \leq n$. Another such system is the system of n-tuples (r_1, \dots, r_n) where $r_i \in \mathbb{R}_i$, an index system with a countable cofinal subset, and where $(r_1, \dots, r_n) > (r'_1, \dots, r'_n)$ if $r_1 > r'_1$ or $r_1 = r'_1$ and $r_2 > r'_2$ or, for some $j \leq n$, $r_i = r'_i$ for i < j while $r_j > r'_j$. (This is the so-called ordinal or lexicographic product of the systems \mathbb{R}_i .) Still another example is the system of pairs of integers where $(i_1, i_2) \geq (j_1, j_2)$ means that $i_1 = i_2$ and $j_1 \geq j_2$.

It may be noted by means of Lemmas 1 and 3 that the proofs of Theorems 1 and 2 of [1] also hold when the set $I \times I \times \cdots \times I$ used in [1] as the domain of the function $x = x[i_1, i_2, \cdots, i_n]$ is replaced by $\mathcal{R}_1 \times \mathcal{R}_2 \times \cdots \times \mathcal{R}_n$, where the \mathcal{R}_i are any index systems with countable cofinal subsystems, providing that \mathfrak{S} is then defined as $\mathcal{C}_1 \times \mathcal{C}_2 \times \cdots \times \mathcal{C}_n$ where \mathcal{C}_i is the family of cofinal subsets of \mathcal{R}_i . The theorems thus obtained almost include the corresponding results of both papers, the case n = 1 giving analogues of the present theorems

404 M. M. DAY

with stronger hypotheses, the case where all $R_i = I$ giving those of [1].

An open question is whether the existence of a countable cofinal subset is needed to derive the conclusions of Lemmas 1 and 3; if not, some weakening of the hypotheses of the theorems would be possible.

BIBLIOGRAPHY

- 1. R. C. Buck, Limit points of subsequences, Bull. Amer. Math. Soc. vol. 50 (1944) pp. 395-397.
- 2. L. Alaoglu and G. Birkhoff, Mean ergodic theorems, Ann. of Math. vol. 41 (1940) pp. 293-309.
- 3. M. M. Day, Convergence, closure and neighborhoods, Duke Math. J. vol. 11 (1944) pp. 181-199.
 - 4. —, Oriented systems, Duke Math. J. vol. 11 (1944) pp. 201-229.
- 5. J. L. Doob, Stochastic processes depending on a continuous parameter, Trans. Amer. Math. Soc. vol. 42 (1937) pp. 107-140.

University of Illinois