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1. General statement. Soph us Lie studied transformations from 
lineal-elements into lineal-elements, and also transformations from 
surface-elements into surface-elements of space. The contact group is 
obtained by requiring all unions to be converted into unions. Lie's 
fundamental theorems may be stated as follows. All the contact lineal-
element transformations form the group of extended point trans­
formations. The contact surface-element transformations which are 
not merely extended point transformations are defined completely by 
either a single directrix equation, or a pair of directrix equations. In 
the first case, a point corresponds to a surface; and in the second 
case, a point corresponds to a curve.1 

We extend the preceding results by studying transformations in 
space from differential curve-elements of order n\ (x, y, zf y', z', • • • , 
y(n)f z(n)^f w h e r e n is 2 or more, into lineal-elements (X> F, Z, Y', Z ' ) . 
An example of such a transformation arises in the problem of finding 
the locus of the centers of spherical curvature for an arbitrary space 
curve. This problem leads to a transformation from curve-elements of 
third order into lineal-elements.2 

We determine the general class of union-preserving transformations 
by means of a directrix equation. Lie has obtained directrix equations 
only for contact transformations of surface-elements since there are 
no contact transformations of lineal-elements besides the extended 
point transformations. For a point-to-surface transformation, Lie's 
standard directrix equation is of the form fl(X, F, Z, x, y, z) = 0. For 
a point-to-curve transformation, there are two standard directrix 
equations of the forms Öi(X, F, Z, x, y, s) = 0 , Q2(-X", F, Z, x} y, z) = 0. 
We find that any general union-preserving transformation from curve-
elements of order n into lineal-elements is completely determined by 
our new directrix equation, involving derivatives, 0(X, F, Z, x, y, z, 
y't*\ • • • ,y ( n - 2 ) , 2 ( w-2 ))=o. 

In the final part of our paper, we shall prove that the only avail­
able union-preserving transformations (in the whole domain of curve-
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elements) are firstly, the group of point transformations, and sec­
ondly, the set of union-preserving transformations from curve-ele­
ments of order n into lineal-elements, together with the extensions of 
these two types. 

2. The union-preserving transformations. Any transformation from 
curve-elements of order n, where n is 2 or more, into lineal-elements 
may be defined by equations of the form 

X = X(x, y, z, pu qu • • • , pn, qn), 

Y = Y(x, yy z, pu qw — , pn, g»), 

(1) Z = Z(x, y, z, pu qw " f pn, g»), 

P = P(x, y, z, pu qw • • , pn, qn), 

Q = Q(*. y, z, pu qw • • , pn, qn), 

where pm=y(m) =dmy/dxm and gv = s(m) =dmz/dxm for m = 1, 2, • • • , n. 
A series of curve-elements of order n may be defined by y—y(x), 

z = z(x), pi = pi(x), qi = qi(x), • • , pn=pn(x)t qn = qn(x). A series is a 
union if and only if the conditions dy—pidx~0, dz—q\dx = §t • • • , 
dpn-i—pndx = 0, dqn-i—qndx = 0 are satisfied. 

A special type of union is the conical-union of order n. This con­
sists of oo1 curve-elements of order n which have in common a fixed 
curve-element of order (w —1). The equations of any conical-union 
are x = x0, y—yo, Z = ZQ, Pi—(pi)o, 5i=(<Zi)o, • • • • pn-x=(pn-i)o, qn-i 
= (<Zn_i)o, qn=F(pn). 

Let us now consider what unions become unions under the trans­
formation (1). These unions must satisfy the pair of Monge differen­
tial equations of order (n+1) 

(YPn - PXPn)pn+! + (YQn - PJTJfo+i 

+ [(F. + PiYy + qiYz + • • • + pnYPn_x + qnY^J 

- P(XX + pxXy + qxXz + • • • + pnXPn^ + qnXqnJ] = 0, 

(Zpn ~ QXPn)Pn+l + (£qn ~ Q-^Üïn+l 

+ [(Zx + piZy + qxZz + • • • + pnZPn_% + qnZqn^) 

- Q(XX + pxXy + q,Xz + . . . + pnXPn^ + qnX^)] = 0. 

THEOREM 1. All transformations from curve-elements of order n into 
lineal-elements may be divided into three distinct types with respect to 
the number of unions which are converted into unions? 

8 Kasner, General transformation theory of differential elements, Amer. J. Math, 
vol. 32 (1904) pp. 392-401. 
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Type 1°. The union-preserving transformations. These carry every 
union into a union. The necessary and sufficient conditions f or a union-
preserving transformation are 

= Yx + p1Yy + qiYz + • • • + pnYPn^ + qnYqn^ 

(3) 

0 = 

Xx + piXy + qiXz + • ' 

Ypn __ Yqn 

Xpn XQn 

Zx + piZy + qiZz + • • 

Xx + piXy + qiXg + • • 

Zpn __ ZQn 

Xpn XQn 

' ' + PnXPn„x + qnXqn_x 

' + PnZpM + i^Qn-t 
' * + PnXPn_x + qnXQn_ 

Type 2°. The intermediate transformations. These are not union-
preserving transformations and satisfy the conditions 

[(F. + PxYy + qiY, + ..-+ pnYPn_x + qn7^ 

- P(XX + PtXy + qiX, + ••• + PnX^ + q»Xu_J] 

• [(Z* + PiZy + qiZ, + • • • + pj.vn_x + q£Qn_) 

- Q(XX + PxXy + qiX, + ••• + pnXPn_, + qJCHJ ]-* 

Y pn ""•" *XPn VQn — FXQn 

Zpn "~ QXpn Zqn — QXQn 

Any intermediate transformation carries the oo00 unions of a Monge 
differential equation of third order into unions. 

Type 3°. The general transformations. These do not satisfy the condi­
tions (4). Any such transformation converts precisely oo2(*+D unions 
into unions. 

The general Type 3° is defined by five arbitrary functions of 
(2n+3) independent variables. The intermediate Type 2° is defined 
by three arbitrary functions of (2w+3) independent variables. For 
this intermediate type, it is seen that (-X", F, Z) may be taken arbi­
trarily and then the functions P and Q are completely determined by 
the equations (4). Later we shall show that the union-preserving 
Type 1° is defined by one arbitrary function of (2n+l) variables or 
by three arbitrary functions of (2n+l) variables. 

We prove Theorem 1. For union-preserving transformations the 
equations (2) must be identities in pn+i and gn+i. Upon setting the 
various coefficients equal to zero and solving for P and Q, we obtain 
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the conditions (3) for union-preserving transformations. 
Next suppose we have the intermediate transformations so that the 

conditions (4) are satisfied. Then it is obvious that the equations (2) 
are equivalent. This shows that under any intermediate transforma­
tion, there are oo °° unions preserved. These satisfy either one of the 
two equivalent Monge differential equations (2). 

Finally suppose the conditions (4) are not satisfied. In the first 
place it is seen that if the last equality of (4) is not valid, we can solve 
the equations (2) for pn+i and qn+i- Therefore there are oo 2<tt+1) unions 
which become unions. Finally if the last equality of (4) is valid, then 
it can be shown that a t each curve-element of order (n — 1) there are 
oo1 conical-unions which become unions. Since there are oo^2**1) 
curve-elements of order (n — 1), it follows that altogether there are 
oo 2(n+i) conical-unions which are converted into unions. Therefore we 
have proved that our general Type 3° carries exactly oo2(w+1> unions 
into unions under all conditions. 

3. The degenerate union-preserving transformations. Henceforth 
we shall consider only union-preserving transformations. However, 
there are certain degenerate union-preserving transformations which 
we wish to exclude from consideration. These degenerate corre­
spondences are those where P and Q assume identically the values 
0 or oo ; and also those for which there exist two functional relations 
between the three functions definining (X, F, Z). 

I t is found that these degenerate transformations may be divided 
into four cases: (a) those which convert every union into a union in a 
fixed plane parallel to one of the coordinate planes, (b) those which 
carry every union into a fixed straight line parallel to one of the co­
ordinate axes, (c) those which carry every union into a conical-union 
of lineal-elements with fixed base-point, and (d) those which carry 
every union into a single fixed union. 

In the rest of our article, whenever we speak of a union-preserving 
transformation we shall mean one which is not of the four preceding 
degenerate types. 

4. The special union-preserving transformations. Any (nondegen-
erate) union-preserving transformation is said to be special if it carries 
every conical-union of order n into a conical-union of lineal-elements. 
Any such special transformation is given by equations of the form 

X = X{x, y, z, pi, qlt • • • , pn-h qn-i), 

(S) F = Y(x, y, z, pu qh • • • , pn-h q ^ t 

Z = Z(x, y, z, pi, qu • • • , pn-U tfn-i), 
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F . + PiYy + qiYz + • • • + pJT^t + q»Yq%_x 

(5) 

P = , 
X» + plXy + qiXg + ' • • + pnXpn-t + SnXjn-i 

_ Z* + ^1^1/ + ^ 1 ^ + • • • + pnZpn-t + (IrJZqn-x 

Xx + 1̂-X*j, + ÇlXg + • • • + pnXPn„x + (Zn f̂fn-j 
These special union-preserving transformations depend on three 

arbitrary functions of (2n+l) independent variables. Thus there are 
00 3/(271+1) special union-preserving transformations. 

5. The directrix equation of a general union-preserving transfor­
mation T. We shall say that a union-preserving transformation T is 
general if it does not carry every conical-union of order n into a coni­
cal-union of lineal-elements. It follows that for such a general trans­
formation 3H, we must have either X^^O, YPn?*0, Zpn9*0, or X g n ^0, 
F f ln^0, Z f ln^0, or both. 

THEOREM 2. For a general union-preserving transformation T, the 
four variables (pn-i, <Zw-i, pn, qn) can be eliminated from the three func­
tions defining (X, F, Z), thus obtaining a single éliminant of the form 

(6) OCX", F, Z, x9 y, z, pu qh • • • , pn-2, qn-2) = 0. 

We call this the directrix equation of our general union-preserving 
transformation T. 

Let us proceed with the proof of the above result. In the first place, 
it is seen by (3) that pn and qn can be eliminated from the first and 
second, and also from the first and third of our equations (1) defining 
the general union-preserving transformation T. We therefore obtain 
the two relations 

m Y = F(X, x, y, z, ph qh • • • , ^»-i, qn-i), 

Z = G(X, x, y, z, pu qu * * ' > pn-u <Zn-i). 

At this point, we wish to introduce the following notation. Let 
X be any function of (X, F, Z, x, y, 2, ph <?i, • • • , pm, <Zm). Then the 
operation prime on X denotes the following linear differential operator 

(8) X' = Xx + piXy + q{Xz + . . . - } - pm+iXPm + qm+iXQm. 

That is, X' denotes the total derivative of X with respect to x while 
considering {X, F, Z) as constants. 

Next upon applying the conditions (3) for a union-preserving trans­
formation, we discover that 

(9) P = Fx, e = Gx, ^ = 0, G '= 0. 
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The éliminant with respect to X of the last two of the preceding 
equations must be identically zero. Differentiating the last two equa­
tions with respect to pnt and also with respect to qn, we find 

XPnFx + FPn_x = 0, XqnFx + Fqn_x = 0, 
(10) 

XPnGx + GPn_x = 0, Xqfix + GQn_x = 0. 

From these four equations we can eliminate Fx and Gx , thus finding 
the two éliminants 

(11) XqnFPn_x — XPnFQn_1 = 0, XqnGPn_x ~ XPnGQn_l = 0. 

Since XPn and XQn can not both be zero, it follows from these equa­
tions that 

(12) FPn_xGqn_x — FQn_xGPn_x = 0. 

Observe that both F and G are not independent of pn~i and gn-i. 
For otherwise, if X is explicitly present in either F' or G', X would be 
independent of pn and qn as follows from equations (9). Hence X is not 
present in the last two of equations (9), and it results that both F 
and Gare functions of X only. This is impossible since our transforma­
tion is not degenerate. 

By the preceding remarks and equation (12), it follows that (7) has 
one and only one éliminant with respect to pn-\ and «gy_i, namely the 
equation (6). This completes the proof of Theorem 2. 

THEOREM 3. The directrix equation (6) completely determines the 
general union-preserving transformation T, and conversely. 

The general union-preserving transformations depend upon one 
arbitrary function of (2n+l) independent variables. Thus there are 
oo/(2n+1) general union-preserving transformations. 

In the first place, it is seen that under the general union-preserving 
transformation T any point in the (X, F, Z) -space corresponds to a 
family of oo* curves in the (x, yf-2)-space, defined by a Monge equa­
tion of order (n — 2). These curves are defined by (6), where (X, F, Z) 
are considered as constants. The derivatives of orders (n — 2), (w —1), 
n of these curves are given by the equations 

(13) G = 0, G' = 0, G" = 0. 

Next any conical-union of order n in the (x, y, z) -space is converted 
into a union. This union is defined by the first two of the preceding 
equations where (x, y, z, ph qi, • • • , £n-i, <Zn-i) are regarded as con­
stants. The first derivatives of this union are given by the equations 
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(14) Qx + POF + QQZ = 0, ü'x + PQY + Qti'z = 0. 

We shall prove that the functions defining (X, Y, Z, P, Q) of our 
general union-preserving transformation T must satisfy the equations 
(13) and (14). In the first place (X, F, Z) must satisfy the direc­
trix equation (6), since it was obtained as a result of eliminating 
(pn-i, qn-i, pn, Qn) from the first three of equations (1) defining our 
general union-preserving transformation T. 

Applying the conditions (3) for union-preserving transformations 
to our directrix equation (6), we obtain the first two of equations (13) 
and the first of equations (14). 

Finally upon applying the conditions (3) for union-preserving 
transformations to the second of equations (13), we obtain the last of 
equations (13) and also the last of equations (14). 

That we can actually solve equations (13) and (14) for (X, F, Z, 
P, Q) follows from the fact that the directrix equation (6) represents 
a three-parameter family of Monge equations of order (w —2) in the 
(x, y, s)-space (or a Monge equation of order (# + 1) obtained by 
eliminating the parameters (X, F, Z), which may be integrated three 
times). 

By Theorems 2 and 3, it follows that the transformation from 
curve-elements of third order into lineal-elements, which is obtained 
from the problem of finding the locus of the center of spherical curva­
ture to an arbitrary curve, is general union-preserving. On the other 
hand, the problem of finding the locus of the center of circular curva­
ture to an arbitrary curve leads to a transformation from curve-
elements of third-order into lineal-elements which is special union-
preserving. 

We note the analogy to Lie's theory of contact transformations of 
surface-elements. In his work, either a transformation is point-to-
point, or else it is point-to-surface or point-to-curve, in which cases 
it is defined by a single directrix equation or by a pair of directrix 
equations. In our theory, a union-preserving transformation is special 
or general, in which case it is defined by a single directrix equation. 

6. The union-preserving transformations of space in the domain of 
curve-elements. We shall now discuss the following result.4 

4 Kasner and DeCicco, Transformation theory of integrable double-series of lineal-
elements, Bull. Amer. Math. Soc. vol. 46 (1940) pp. 93-100. Kasner, Lineal ele­
ment transformations of space for which normal congruences of curves are converted 
into normal congruences, Duke Math. J. vol. 5 (1939) pp. 72-83. Kasner and De­
Cicco, Curvature element transformations which preserve integrable fields, Proc. Nat. 
Acad. Sci. U.S.A. vol. 25 (1939) pp. 104-111. 
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THEOREM 4. If a union-preserving transformation T from curve-
elements into lineal-elements carries any two unions which possess n^2 
as the order of contact into two unions which have, at least, second order 
contact, then T must be an extended point-transformation. 

In the first place, it is obvious that our union-preserving trans­
formation T is at most from curve-elements of order n into lineal-
elements. 

Let us first of all assume that T is a general union-preserving trans­
formation. The first derivatives P=dY/dX and Q=dZ/dX of any 
transformed union under the general union-preserving transforma­
tion T defined by (13) and (14) are given by (14). We proceed to find 
the second derivatives dP/dX=d2Y/dX2 and dQ/dX=d2Z/dX\ 

In the first place, by differentiating the last of equations (13) 
totally with respect to x, we find 

(15) {tix + PÜY + QQz)dX/dx = - û " \ 

Next differentiating the equations (14) totally with respect to x and 
using the conditions (14) and (15), we find 

QrdP/ dX + QzdQ/dX + Qxx + P2&YY + Q2tizz 

+2PÜXY + 2Qüxz + 2PQQYZ = 0, 
(16) , , , , , 

tirdP/dX + QzdQ/dX + QXx + P2^YY + Q2üzz 

+ 2PÜXY + 2QÜfxz + 2PQÜYZ = (1/Q'")(l£ +P0r + Qü'z')2. 

Now apply the conditions of our theorem. Then dP/dX and dQ/dX 
can not contain pn+\ and qn+i. The only place where these appear 
are in 0" ' . Their coefficients are QPn«2 and 0fln_2 which can not be 
zero. Therefore our transformation T is not a general union-preserv­
ing transformation from curve-elements of order n into lineal-ele­
ments. 

Finally let us suppose that our transformation T is special union-
preserving from curve-elements of order n into lineal-elements. By 
(5), it is found upon extending our transformation T once and impos­
ing the condition that dP/dX and dQ/dX be independent of pn+i and 
qn+i that our special union-transformation T is a union-preserving 
transformation from curve-elements of order (# — 1), at most, into 
lineal-elements. This is impossible. 

The preceding two contradictions lead us to the conclusion that 
there are no union-preserving transformations from curve-elements 
of order n into lineal-elements, such that it converts any two unions 
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which possess w^2 as the order of contact into two unions which 
have at least second order contact. 

Therefore the only possible union-preserving transformations 
which satisfy the conditions of our theorem are those from lineal-
elements into lineal-elements. According to Lie's theorem, it follows 
that the only such transformations are the extended point trans­
formations. This completes the proof of Theorem 4. 

From this theorem, it follows that the only union-preserving trans­
formations from curve-elements of order n into curve-elements of 
order m where n^m>l are the extended point transformations. 
Therefore the only successful union-preserving transformations (in the 
whole domain of curve-elements) are firstly, the point transformations, 
and secondly, the union-preserving transformations from curve-elements 
of order n, where n is 2 or more, into lineal-elements, or the extensions of 
these two types. 

Thus if Tis a union-preserving transformation from curve-elements 
of order n into curve-elements of order m where n^m^l, then, if 
n = m, T is the extension of order m of a point-transformation ; and 
if n>m, T is the extension of order (m — 1) of a union-preserving 
transformation from curve-elements of order (n—m + l) into lineal-
elements. 

7. Alternate characterization of union-preserving transformations. 
Under a union-preserving transformation T, a single union in the 
(x, y, s)-space corresponds to a single union in the (X, Y, Z)-space, 
but to a single union in the (X, Y, Z)-space there correspond <x> 2(w~1) 

unions in the {x, y, s)-space. 
(It is noted that a point (X0, YQ, Z0) is not considered to be a 

union of lineal-elements in the (X, Y, Z)-space, but consists of oo/(D 
conical-unions of lineal-elements, each such conical-union correspond­
ing to oo2(n-x> unions of the Monge equation of order (n—2), defined 
by our directrix equation (6)). 

THEOREM 5. Any transformation from curve-elements of order n of 
the (x, y, z) -space into lineal-elements of the (X, Y, Z) -space, by which 
there correspond exactly oo2^-1) unions in the (x, y, z)-space to any 
single union of the (X, Y, Z)-space, is a union-preserving transforma­
tion. 

Let Y=F(x), Z = G(x), P = FX, Q = GX be any union in the (X, Y, 
Z)-space. Upon applying our transformation (1) to this union, we 
find that the corresponding unions in the (x, y, z) -space must satisfy 
the differential equations 
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Y(*,y>*,pi,qu ' ' • , ^ , 2 n ) = F [ X ( # , ytz,puqi, • • • ,£»,?»)], 

(17) Z(x,y,z,pi,qu • • • ,^n,^n)=G[Z(x, y . s ^ i . g i , • • • ,#»,?»)], 

-?(*» y» »• £li ?li ' ' • • Ao Jn) =^X, Q(X, y, Z, pu Jl. * ' ' , />n, ?») =Gx. 

In general, we can solve these equations for (pn-u 2n-i, pn, q.*) in 
terms of (x, y, z, pu (Zit " • • » pn-2, q.n-2). Thus we find that there are a t 
most 00 2Cn~"1> unions in the (x, yf s)-space which correspond to a given 
union in the (X, F, Z) -space. 

We now impose the conditions that these represent exactly 00 2(n~1> 
unions. In the preceding equations, we can think of {pn-u qn-u Pm qn) 
as being functions of (x, y, z, pu qu • • • , pn-2, <Zn-2). We can differenti­
ate the first equation partially with respect to (x, y, z, pu qu • • • > 
pn-2, qn-2), obtaining a set of (2w —1) partial equations. Multiplying 
these equations by (1, pu Qu • • • , pn-u <Zn-i) respectively, adding the 
results, and using the conditions that pn is the derivative of pn-\ and 
qn is the derivative of gy-i, we obtain an equation of the same form as 
the first of equations (2). Similarly operating upon the second of the 
preceding equations, we are led to an equation of the same form as the 
second of equations (2). From these equations of the form (2), we 
are led to the conclusion that our transformation is union-preserving 
since the equations must be independent of pn+i and qn+u This com­
pletes the proof of Theorem 5. 

As an application, consider the osculating sphere to any arbitrary 
curve. To a single curve there corresponds a single spherical evolute, 
that is, the locus of the centers of spherical curvature. But to a given 
spherical evolute there correspond 004 spherical involutes. Thus our 
work may be considered to be a generalized theory of spherical evo-
lutes and involutes in space. 
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