A NOTE ON DIFFERENTIAL POLYNOMIALS
A. P. HILLMAN

The following theorem indicates to what extent the expression of
a differential polynomial! G as an element of the differential ideal
determined by F is unique.

TaEOREM 1. Let F#0, Cy, Cy, - -+, C, be differential polynomials in
the unknowns y1, -+ +, ¥y, wWith coefficients in an abstract differential
field F. Let F9 be the ith derivative of F and let

(1) CoF -+ CIF’ R CaF(s)
be identically zero. Then each C; is in the perfect ideal generated by F.?

We need merely show that any solution y;=7%; (j=1, -+, %), in
any extension 7 of ¥, of the form F is a solution of each C;.? Since
this is true if F has no solutions, we may assume that F effectively
involves the unknowns. Make the substitution y;=2;+4;in (1). Let
A consist of the terms of F of lowest degree in the z; and their deriva-
tives. Collecting terms of the same degree, we see that

@ CoMA + -+ + C(5)A® =0,

where C;(9) is the element of ¥ obtained by substituting y;=7;
(G=1,+-+., n) in C;. Let A be of order » =0 in some 2 which it
effectively involves, let 2, be the mth derivative of z;, and let S be
the partial derivative of 4 with respect to 2, For >0, A® can
be written as Szx,p+i+Bi, where B; is some form of order less than
p+1 in 2. Now (2) becomes

3) Co(#)St%ps + D = 0

where D has order less than p+s in 2z. Hence C,(§)=0. In turn
Cs—1, + » +, Co must vanish for y;=74; as desired.

Using the ideas of the above proof together with a uniqueness
result of J. F. Ritt,% one can very easily prove the following generaliza-
tion.
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! For definitions of differential fields, polynomials, and ideals, see H. W. Rauden-
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THEOREM II. Let CiPi+ -+ - +C.P, be identically zero, where the
P; are distinct power products each of degree d>0 in a nonzero F and
its derivatives. Then each C; is in the perfect ideal generated by F.

NEw York City

ON THE NON-EXISTENCE OF ODD PERFECT NUMBERS OF
FORM 5°qig; - - - gi-gi

ALFRED BRAUER!

One of the oldest unsolved mathematical problems is the following
one: Are there odd perfect numbers?? If such a number # exists, it
must have the form

« 261 2B, 26t
n=pq q ‘g

where p, qi, ¢z, * - -, q¢ are primes and p=a=1 (mod 4). This has
been proved by Euler.? Sylvestert obtained estimates for ¢, in particu-
lar t=4, and (=7 if 220 (mod 3). Recently, it was shown by
R. Steuerwald® that the case fi=0:= : - + =8;=1 is impossible, and
by H. J. Kanold® that the same is true for Bi=0:= - - - =f;=2. More-
over Kanold proved that # is not perfect if the greatest common
divisor d of 28,41, 28:+1, - - -, 28,4+ 1 is divisible by 9, 15, 21, or 33,
and some similar results. All these results deal with the case d >1.
In the following, it will be proved that no odd perfect number # of
form p°giq: - - - ¢¢-14} exists. Here we have d =1. For the proof I use
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