
CAUCHY-STIELTJES AND RIEMANN-STIELT JES INTEGRALS 

G. BALEY PRICE 

1. Introduction. This note treats the equivalence of the Riemann-
Stieltjes and Cauchy-Stieltjes integrals (abbreviated RS and CS in­
tegrals) and conditions for the existence and equality of the latter. 
The ordinary Riemann, the left Cauchy, and the right Cauchy in­
tegrals are defined as limits of the sums Xa/(&) (x* ~-#*-i) » %i-i = & = ***> 
^2if(xi-i)(xi—Xi-i) anA^if{xi)(x%-- x%-i) respectively ; it is known [2] 
that these integrals are equivalent. Corresponding to these integrals, 
we have the RS and the two CS integrals, defined as limits of 
the sums ]£*ƒ(£») [g{x%) - g(*.--i) ], YTif(*<-i) k(*<) - g(*<-i) ] > and 
X^i/O^*) k(#*)-~g(#*'-i)L The right modified RS integral is obtained 
from the sums X)i/(£») [g(#») — g(#*-i)], ff*-i^s £*<#*. Examples in §4 
show that the CS integrals may exist, with equal or unequal values, 
when the RS and the right modified RS do not; that the right modi­
fied RS integral may exist when the RS does not; and that one of the 
CS integrals may exist when the other does not. Thus the RS, the 
right modified RS, and the two CS integrals are not equivalent. Since 
all these integrals obviously exist when the RS integral does, it is 
natural to investigate conditions under which the existence of a CS 
or right modified RS integral implies the existence of the RS integral. 
I t is shown in this note that if g is non-decreasing, if ƒ and g have no 
common discontinuities on the same side, and if the left CS integral 
exists, then the RS integral exists and has the same value, the in­
tegrals being limits in the sense of increasing refinement of subdivi­
sions. This result is established in two steps : (a) if g is non-decreasing, 
if ƒ and g have no common discontinuities on the right, and if the 
left CS integral exists, then the right modified RS integral exists; 
(b) if the right modified RS integral exists, if g is non-decreasing, and 
if ƒ and g have no common discontinuities on the left, then the RS 
integral exists. This result obviously includes the previously proved 
equivalence of the Riemann and Cauchy integrals [2] and certain 
others [3]. Further, it states sufficient conditions for the equality of 
the two CS integrals; these conditions show that the two ordinary 
Cauchy integrals are always equal. The note closes with a proof that 
the CS integrals exist when ƒ has only simple discontinuities and g has 
bounded variation. We conclude from this result and others stated 
above that both of the CS integrals properly include the RS integral, 
and that neither CS integral includes the other. Precise statements of 
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theorems are given in §5. 

2. Notation. Let ƒ and g denote real, single valued, bounded func­
tions defined on a^x^b. Let X denote a subdivision a=Xo<xi 
< • • • <xn = b of the interval a^x^b, and let x'^x^x" denote a 
generic interval of X. Let X^X\ denote that X2 is a refinement 
of Xi, and let X1X2 denote the subdivision determined by all the 
points of division of Xi and X2. Also let | | x | | denote the norm of X, 
that is, the maximum length of a subinterval of X. Finally, let X^f(A) 
denote the sum of the values of the interval function ^f for all the in­
tervals A of X. The interval functions to be met below are of the form 
ƒ(£) [#(#") "-£(#')]» x' S%Sx". This notation has been used by Geöcze 
[1]. 

3. Definitions. In this section we give definitions of various in­
tegrals.. 

DEFINITION. We say ƒ has a left CS X integral with respect to g> 
denoted by (CL, X)fjdgy if and only if for each e > 0 there exists an 
Xo(e) such that 

(i) (CL, X)ffdg - Xf{x')[g{x") - g{x')} < e, X ^ X0(e). 

DEFINITION. We say f has a left CS \\X\\ integral with respect to g, 
denoted by (CL, | |x||)/o/rfg, if and only if for each e > 0 there exists a 
3(e) > 0 such that 

(2) (CL, \\x\\)fbfdg - Xf(x')[g(x") - g(x')} < «. N I è 5(e). 

The definitions of the corresponding right CS integrals (C#, X)fafdg, 
(C/j, | |x | | ) / o /dg are obtained by replacing f(x') by f(x") in (1) and (2). 
Also, if f(x') is replaced by ƒ(£), x'^l-^x", we obtain the RS in-
tegrals (JK, X)fjdgy (R, \\x\\)fjdg. Ifƒ(*') in (1) is replaced by ƒ(£), 
x' SZ<x,f, we have the right modified RS X integral (#*, X)JhJdg. 

4. Examples. A first example shows that the CS integrals may 
exist, with equal or unequal values, even when the RS and the right 
modified RS integrals do not, and that the right modified RS integral 
may exist when the RS does not. Let ƒ have the value 1 when x = 0 
and the value 0 elsewhere on the interval — l ^ x g l . Set g(0)=c, 
g(x) = - 1 on - 1 Sx <0 , and g{x) = 1 on 0 <x ^ 1. Then (CL, X)f[jdg 
= 1 — c, (CR, X)f_lfdg=l +c. The | |x | | CS integrals do not exist, and 
neither do the X and \\x\\ RS integrals. If c = l, then (R*, X)f\fdg 



i943] CAUCHY-STIELTJES AND RIEMANN-STIELTJES INTEGRALS 627 

exists and equals (CL, X)J_rfdg. 
A second example shows that one CS integral may exist when the 

other does not. Let f(x)=sm (1/ff) and g(x)—x — 1 on — l ^ x < 0 ; 
f(x)=0 and g(x)~x + l on O ^ x ^ l . Then (CR, X)J_Jdg exists but 
(CL, X)f_1fdg does not (see a necessary condition for the existence of 
the latter [3, p. 267, 2.14]). 

5. Theorems. The results to be established will be stated in this 
section. 

THEOREM 1. Let ƒ and g, defined on a^x^b, have the following prop-
erties : 

(i) | / (* ) | £M; 
(ii) g{x) is non-decreasing; 
(iii) ƒ and g have no common discontinuities on the left ; 
(iv) (£*, X)Jlfdg exists. 

Then (R, X)Jlfdg exists and equals (R*, X)Jlfdg. 

THEOREM 2. Let ƒ and g satisfy (i), (ii) and the following: 
(v) ƒ and g have no common discontinuities on the right) 
(vi) (CLjX)fafdg exists. 

Then (R*, X)fafdg exists and equals (CL, X)flfdg. 

COROLLARY 1. Let f and g satisfy (i), (ii), (vi), and the following: 
(vii) ƒ and g have no common discontinuities on the same side. 

Then (R, X)fb
afdg, (CR, X)fafdg exist and equal (CL, X)fb

afdg. 

COROLLARY 2. If the hypotheses of Corollary 1 are strengthened by 
replacing (vii) by 

(viii) ƒ and g have no common discontinuities, 
then (R, \\x\\)f%fdg also exists. 

THEOREM 3. If f satisfies (i) and has only simple discontinuities, and 
if g has bounded variation, then (CL, X)fb

afdg and (CR, X)flfdg exist. 

6. Proofs of the theorems. The proof of Theorem 1 will be omitted ; 
a more general result is known [3, p. 273]. 

Consider Theorem 2. Let e be an arbitrary positive constant, and 
let X0(e) be the subdivision which exists by (1) and (vi). Let rj be 
another arbitrary positive number. In each interval ' of 
X0 define a point t as follows: (a) t — x" iîf(x) è / (# ' ) +y has no solu­
tion xsatisfyingx' <x <x" ; (b) t = g.l.b. Ex[f(x) è / (# ' ) +rj, x' <x <x" ] 
in case this set is not empty. With each point t associate a sequence 
of points /i, /2, • * • as follows: (a) tk = t, k = l, 2, • • • , if t = x"; 
(b) tiç = t} k = l, 2, • • • , if f(t)^f(x')-\-7)\ (c) in the remaining case 
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{tk} is a sequence such that f(tk)^f(x')+V> k = l> 2, • • • , and 
liiTu tk = t. The third case occurs only when ƒ is discontinuous on the 
right at /; at such a point g is continuous on the right by (v). Then for 
every interval of X0 lim& [g(x")—g(tk)]~[g(x")—g(i)]. This fact 
will be used to prove 

(3) * o * k ( * " ) - « ( 0 ] ^ 2 € -

Let Xi be the subdivision obtained by adding the points of division / 
to those of Xo, and let Xl be the subdivision obtained from X0 by 
subdividing each of its intervals by tk. Since X\^XQ, we have 

(4) | x\f{x') [g(x") - g(x') ] - X,f(x') [g{x") - g{x') ] | < 2« 

by (1) and (vi). But since 

x\f{x') [g{x") - g(x')} = X0f(x') [g(h) - g(x')} + Xof(h) [g(x") - g(h)\, 

we find that the left-hand side of (4) reduces to 

(5) | X0[f(h) - f(x') ] [g(x") - g(h) \\*X#i [«(*") - g(h) ]. 

Thus from (4) and (5) we find Xorj[g(x") — g(tk)\ <2e; by taking the 
limit as &—>oo, we obtain (3). 

Let £/*(ƒ; x', x") and £*(ƒ; x', xn) denote the l.u.b. and g.l.b. re­
spectively of ƒ on x' ^x <x". Then since 

X1U*{f;x',x")[g{x")-g(x')] 

= X0U*(f; x\ t)[g(t) - g(x')] + X0U*(f; t, x")[g{x") - g{t)\, 

we have 

| X1U*(f; x', x")[g(x") - g(x')] - X,f(x')[g{x") - g(x')] \ 

=g | X0[U*(f; x', t) - f{x')][g{t) - g{x')\ | 

+ | X0[U*(f; t, x") - f(x')][g(x") - g(t)) | 

^ u[g(i) - 1(a)] + 2MXo[g(x") - g(t)] :g V[g(b) - g(a)] + 4Me/t, 

by (i), (ii), (3), and the definition of t. Thus 

I X1U*(f; x', x")[g{x") - g(x')] - (CL, X) f fdg\ 

£v[g(b) - g(a)] + AMe/V + e 

by the result just established and the definition of X0. If f is an arbi­
trary positive number, it is possible to choose rj and e so small that 
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the expression on the right of the last inequality is less than J". By a 
similar argument we can show that there exists a subdivision X2 such 
tha t 

*,£*(ƒ; x', %")[g{x") - g{x')\ - (CL, X) f fdg\< f. 
v a 

I t follows from these results that 

Xf{i)[g{x") - g{x')\ - (CL,X) f f dg <r 
iox xr Si<x" and any X^XiX2. Thus (i£*, X)Jh

afdg exists and equals 
{CL, X)fb

afdg, and the proof of Theorem 2 is complete. 
Corollary 1 follows from Theorems 1 and 2. A sufficient condition 

that (R, \\x\\)Jlfdg exist is that (R, X)f%fdg exist, and that ƒ and g 
have no common discontinuities [3, p. 269, 4.14]; Corollary 2 follows 
from this condition and Corollary 1. 

Before we begin the proof of Theorem 3, two preliminary results 
are needed. Let g be any function of bounded variation on aSxSb> 
and let x' be any point such that aSx'<b. Then given any f >0 , 
there exists an x" sufficiently near x' on the right so that the total 
variation of g on any interval tSxSxn> where x'<t<x", is less 
than f. To prove this statement we define h(x)=g(x), x^x', and 
h(x') =g(x'+0) and recall that the total variation of h(x) is continu­
ous on the right at x' [6, p. 356]. The second preliminary result is 
the following. I f / i s defined on a Sx SP and has simple discontinuities 
only, and if the oscillation of ƒ at each point of the interval a^x<^ 
is less than X, then a Sx ^/3 can be subdivided into a finite number of 
intervals x' SxSx" such that the oscillation of ƒ on x' Sx<xtf is less 
than 2X. The proof follows readily from a theorem of Baire [4, p. 311 ]. 

Finally, consider the proof of Theorem 3. Let any e > 0 be given. 
Form a subdivision X0(e) of a SxSb by points a =Xo<Xi< • • • <ocn 

= 6 so that (a) each of the r points at which the oscillation of ƒ is 
equal to or greater than X is a point of division; (b) if x'SxSx" is 
an interval of X0 such that the oscillation of ƒ at xf is equal to or 
greater than X, the total variation of g on any interval tSxSx", 
x' <t<x", is less than f ; (c) if x' SxS%n is not an interval of the type 
described in (b), the oscillation o f / o n xfSx<x,f is less than 2X. 

Let Xi be any refinement of X0. A straightforward calculation 
shows that 

(6) |Xi/-(0[g(x") - g(x')] - X0f(x')[g(x") - g(x')] | < IMrÇ + 2\V, 

where V is the total variation of g on a Sx Sb. We may suppose that 
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X was chosen so that 2XF<e/4 . This choice of X determines the in­
teger r. We may suppose further that £* was chosen so that 2MrÇ < e/4. 
Then the right-hand member of (6) is less than e/2. Similarly, for 
X2 è ^To, we have 

I X,f(x')[g{x") - g(x')} - X2f(x')[g{x") - g(x')} | < a/2; 

hence 

I Xi/(*0 [g(*") - *(*0] " X2f{x')[g{x") - g(x')] | < e, 

^ i , X2 ^ X0(e). 

This is a sufficient condition that (CL, X)flfdg exists [5, p. 106]. A 
similar proof shows that (CR, X)Jh

afdg also exists. 
All proofs are now complete. 

BIBLIOGRAPHY 

1. Z. de Geöcze, Sur la fonction semi-continue, Bull. Soc. Math. France vol. 39 
(1911) pp. 256-295. 

2. D. C. Gillespie, The Cauchy definition of integral, Ann. of Math. vol. 17 (1915) 
pp. 61-63. 

3. T. H. Hildebrandt, Definitions of Stieltjes integrals of the Riemann type, Amer. 
Math . Monthly vol.45 (1938) pp. 265-278. 

4. E. W. Hobson, The theory of functions of a real variable, vol. 1, 3rd edition, 1927, 
Cambridge University Press. 

5. E. H. Moore and H. L. Smith, A general theory of limits, Amer. J. Math. vol. 44 
(1922) pp. 102-121. 

6. E. C. Titchmarsh, The theory of functions, 1932, Oxford University Press. 

T H E UNIVERSITY OF KANSAS 


