
ALTERNATIVE ALGEBRAS OVER AN ARBITRARY FIELD 

R. D. SCHAFER1 

The results of M. Zorn concerning alternative algebras2 are incom­
plete over modular fields since, in his study of alternative division 
algebras, Zorn restricted the characteristic of the base field to be not 
two or three. In this paper we present first a unified treatment of 
alternative division algebras which, together with Zorn's results, per­
mits us to state that any alternative, but not associative, algebra A 
over an arbitrary field F is central simple (that is, simple for all scalar 
extensions) if and only if A is a Cayley-Dickson algebra3 over F. 

A. A. Albert in a recent paper, Non-associative algebras I : Funda­
mental concepts and isotopy,* introduced the concept of isotopy for the 
study of non-associative algebras. We present in the concluding sec­
tion of this paper theorems concerning isotopes (with unity quanti­
ties) of alternative algebras. The reader is referred to Albert's paper, 
moreover, for definitions and explanations of notations which appear 
there and which, in the interests of brevity, have been omitted from 
this paper. 

1. Alternative algebras. A distributive algebra A is called an 
alternative algebra if ax2 = (ax)x and x2a=x(xa) for all elements a, 
x in A, Tha t is, in terms of the so-called right and left multiplications, 
A is alternative if RX2 = (RX)2 and LX2 = (LX)2. 

The following lemma, due to R. Moufang,5 and the Theorem of 
Artin are well known. 

LEMMA 1. The relations LxRxRy = RxyLXf RxLxLy=LyxRx, and RxLxy 

= LyLxRx hold for all a, x, y in an alternative algebra A. 
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THEOREM OF ARTIN. The subalgebra generated by any two elements 
of an alternative algebra A is associative. 

I t follows from the Theorem of Artin that if x is any element of an 
alternative algebra A over F, and if ƒ (X) is any polynomial in X with 
coefficients in F, then f(Rx) — R/w and f(Lz) =i / ( a ; ) . 

Moreover, if an alternative algebra A contains a right nonsingular 
element x and a left nonsingular element y, then A has a unity quan­
tity. For the identity transformation i" is then a polynomial in Rx 

with coefficients in F, and the correspondence x—>RX is one-to-one. 
Thus the unity quantity of A and the inverse x~l exist, and are poly­
nomials in x, and Rx-i = (Rx)~

1. Clearly these results hold for an al­
ternative division algebra A. 

In this paper we shall require the following lemma. 

LEMMA 2. In an alternative division algebra A, the norm of a product 
xy is equal to the product of the norms of x and y. 

For if x = 0 the lemma is obvious. Otherwise Lx is nonsingular, and 
LxRxRy^RxyLx by Lemma 1. Thus \LX\ -\RX\ '\Ry\ =\Rxy\ '\LX\, 
and \RX\ • | Ry\ =\ Rxy\. The conclusion follows. 

Since any simple algebra A over F is central simple over its trans­
formation center, the determination of all simple alternative algebras 
consists of a determination of those which are central simple. Zorn's 
results imply that a central simple alternative algebra over an arbi­
trary field is either (1) a division algebra, (2) an associative algebra, 
or (3) a Cayley-Dickson algebra with divisors of zero.6 We are led 
directly to this theorem. 

THEOREM 1. Let A be an alternative, but not associative, central divi­
sion algebra over F. Then A is an algebra of degree two and order eight 
over F. 

For there exists a scalar extension AK of A such that AK over K is 
not a division algebra. Since AK is not associative, AK is a Cayley-
Dickson algebra (with divisors of zero) over K. Hence A is of degree 
two and order eight over F. 

2. Alternative division algebras of degree two. We are able to 
make a study of alternative division algebras of degree two which 
is independent of Zorn's results, and (although a portion of the result 
is indicated in Theorem 1) we shall do so. For the proof of Theorem 2 
we require the two lemmas which follow. 

6 Zorn's so-called "vector matrix algebra" is (over any field, including those of 
characteristic two) merely a Cayley-Dickson algebra with divisors of zero. 
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LEMMA 3. Let the principal f unction of any element x of an alternative 
division algebra of degree two over Fbex2 — t(x)-x+n(x), where t(x) and 
n(x) are in F. Then the linear transformation 

(1) S: x<-> xS = t(x) — x 

is an involution of A such that x-\-xS = t(x), and x(xS) = (xS)x = n(x). 

The conclusions are trivial except for showing that 5 is an involu­
tion of A. Clearly S2 = L By Lemma 2 we have (xy) • (xy)S = n(xy) 
= n(x) -n(y) = (x-xS) -n(y). I t follows from the Theorem of Artin that 
(xy)S = (xy)"1 • (xy) • (xy)S = y~1x~~1x(xS) • n(y) = n(y) • y~x(xS) 
= (yS-y)y~1(xS) =yS-xS. Hence 5 is an involution of A. 

LEMMA 4. Let B be an alternative algebra of order 2s over F defined as the 
supplementary sum B—f\D + • • • +f8D, where D = (l, u2), ul = u2+a, 
— 4(^7^1, / i = l , / ? =7*5^0, 7* in F, d-fi=fi-dS for all d in D, S as in 
(1), (i = 2, • • • , s). Then, if B is a proper subalgebra of an alternative 
division algebra A of degree two over F, there exists an element g in A, 
but not in B% such that 

(2) g2 = 7 T^ 0, y in F, and xg = g(xS) 

holds for all x in B. 

I t is evident that ƒjD-ƒjDQD and that the intersection (fjD-fkD) 
fYD=0 for j?*k, j , k = l> 2, • • • , 5. In order to establish (2) it is 
sufficient to prove the existence of g with the trace t(xg) = 0 for all x 
of B. Now if y is any element of B, then y = di+f2d2+ • • • +fsd8 with 
di in D. But *(ƒ,<*»•) = 0 for j V 1. Hence t(y) =t(dx). 

Let v be an element of A not in B, and write g = (Xi+X2w2) 
+/2(X3+X4W2)+ • • • +f8Q^28-i+^2su2) +v, where the Xt are undeter­
mined coefficients in F. Denote t(ff) by /i2/-i and t(fjU2-v) by /x2?. 
Then the existence of g satisfying (2) is equivalent to the existence 
of X*- (i = l, • • • , 2s) in -Fsuch that 

t(g) =2Xi+ X2 + M I =0 , 

t(u2g) = Xi+(l + 2o:)X2 +M2 =0 , 

*(/ig) = 27^2i_i+ 7yX2i+M2y-i = 0, j = 2, • • • , s, 

Kfju2'g)= 7jk2j-.i — 2ay3\2j+n2j = 0, y = 2, • • • , s. 

But the determinant A of the coefficients of this system of linear equa­
tions is A = ( l + 4 a ) • J^27?( — 1— 4a) 7^0. Hence the desired solutions 
X* exist. 

An algebra Q is called a quaternion algebra if Q = (l , w2, ^3, W4), 
u4t = uzu2i ul = u2+a,ul=(3, u2u^ = Uz(l—u2)) where a and j3 5^0 are in F, 
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— 4a 7^1. Moreover, Q is a division algebra if and only if there exist 
no X and /* in F such that j3 = X 2 + X M —a/*2. 

An algebra C is called a Cay ley-Dickson algebra if C = Q+gQ, with 
elements z=x+gy, where x> y are quaternions, and multiplication is 
defined by 

(3) Oi + gyd(x2 + gy2) = (xxx2 + yy2-yiS) + g(%iS-y2 + x2yu* 

where g2=jTé0 in J7 and 5 is the involution (1) of Q. 

THEOREM 2. An alternative algebra A over F is a division algebra of 
degree two over F if and only if A is one of the following: 

(a) a separable quadratic field, or an inseparable field of exponent twof 

(b) a quaternion division algebra Q, or 
(c) a Cayley-Dickson algebra C = Q+gQ, where Q is a division alge­

bra and there exist no X, JU, p, a in F such that 

(4) y = X2 + Xju - a»2 - / V - ppcr + a0a2. 

If A is generated by less than three elements, then A is associative 
and is either (a) or (b). Otherwise, if the characteristic of Fis not two, 
A contains a quaternion subalgebra Q as in (b), and an element v 
which is not in Q. If the characteristic of F is two, consider two 
cases : if A is commutative, then A is associative7 and is either (a) 
or (b). If A is not commutative, there exist two noncommutative 
elements x> y. These generate an associative, noncommutative sub­
algebra (a quaternion algebra Q) oi A. Also there exists an element v 
of A which is not in Q. 

The algebra Q is a particular example, 5 = 2, of the algebra B de­
fined in Lemma 4, f2 = Us, y2=/3. Thus there exists an element g in A, 
but not in Q = B, satisfying (2). Then A contains A 0 =B+gBy the ele­
ments z of A o being expressible uniquely as z = x+gy for x} y in B. We 
make effective use of equation (2), Lemma 1, and the Theorem of 
Artin in proving that A o is an algebra in which multiplication is de­
fined by (3). 

For (gyx) (gy2) = (gyi)(y2S• g) = [g(yi • y2S) ]g = [ ( ^ • yiS)g]g = (y2 • yxS)g2 

— yy2-yiS. Also from the fact that y%S = y^yiSy = y^yiS - g2 

= y~l(yiS'g)g ^y'Kgyùg, it follows that g(x2yi) = (yiS-x2S)g 
= [{y~l(gyi)g}^S]g=y~1(gyi) [g(x2S-g)] = 7 ~ 1 t o i ) kte**)] =7"1(£yi) 
• (7*2) = (gyi)x2. But then xi = y~l(g-XiS)g and g(y2S-xi) =(gxi) -y2S 
also. Hence xx(gy2) =* [y-l(g'XXS)g\(gy2) = y~l[g(xxS - g)]{y2S - g) 
= y~l[g{(xiS-g)y2S}]g = y^liiigxOyiSUg = y-1[g{g(y2S-x1)}]g 
— y-1(yy2S'Xi)g = g(xiS'y2). Hence equation (3) holds. 

7 A commutative alternative algebra over a field of characteristic not three is 
associative. See M. Zorn, Theorie der Alternativen Ringe, op. cit. 
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Having shown that any alternative division algebra of degree two, 
which is not associative, must contain the algebra A0i we need now 
only to prove that A 0 is actually an alternative algebra and is not a 
proper subalgebra of any alternative division algebra of degree two. 
We may readily verify these conclusions if we refer to the matrices 
corresponding to the linear transformations we have used. Thus, for 
z = x+gy in A0, 

Rx SRy\ 

ySLy Lx) 
(5) 

L. « ( Lx Rv) 
\yRys Lsx/ 

where the matrices Rx, Lx, • • • , S are the 4-by-4 matrices of the linear 
transformations induced on Q by the corresponding transformations 
on Ao. Computation, involving the associativity of Q, yields Rz% = (Rz)

2 

and LZ2 = (LZ)2. Hence the Cayley-Dickson algebra C = Ao is alterna­
tive. If C were a proper subalgebra of A, then A would contain a new 
Ao = C+hC with multiplication denned by (5), x and y being in C. 
But computation with the matrices above reveals that if A o were 
alternative, C would be associative, which it is not. 

Condition (4) follows from Lemmas 2 and 3. Let z = x+gy with x, y in 
<2, and let S be denned by (1). Then n(z) = z-zS=(x+gy)(xS+yS>gS) 
= (x+gy)(xS — gy)=X'xS—yy'yS = n(x)—yn(y). Now C is a divi­
sion algebra if and only if n(z)7*0 for every nonzero z in C But 
n(x) — yn(y) = 0 if and only if y~n(x) [n(y)]~1 = n(xy~1) =n(y), the 
norm of v for some v in Q. Let v —\+ixu2+pUz+au^ Then C is a divi­
sion algebra if and only if there exist no X, /x, p, a in F such that 
y=n(v) =V'vS=\2+\jjL—afjL2—(3p2—(3pcr+al3<r2. 

We may combine the results of Zorn and Theorems 1 and 2 in the 
following manner and say: an alternative, but not associative, alge­
bra A over an arbitrary field F is central simple if and only if A is a 
Cayley-Dickson algebra over F. 

3. Isotopes of alternative algebras. Albert has proved that an 
algebra A with a unity quantity is associative if and only if every 
isotope of A with a unity quantity is associative and is equivalent 
to A. We consider here the corresponding problem for alternative 
algebras. 

THEOREM 3. Let A be an alternative algebra, and B be an isotope of A 
with a unity quantity. Then A has a unity quantity, and B is alternative. 

R*=( 

file:///yRys
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For B is equivalent to a principal isotope A 0 of A, in which products 
(a, x) are defined by (a, x)=aRx

0) with Rx
0)=PRxQ for nonsingular 

transformations P , Q. (In terms of left multiplications, (x, a) = aL(
x
0) 

with LX
Q) =QLxp.) Let e be the unity quantity of A 0 and h = eQ. Then 

I = Re0) =PRht and 2?& is nonsingular. Similarly if k=eP, then L& is 
nonsingular, and it follows from the proof in §1 that the algebra A 
has a unity quantity. 

N o w P = i ? A ~ 1 = 5 r i . Hence R^ =Rh-iRxQ = LhRh-i(XQ)Lh-i by Lem­
ma 1. Tha t is, Rf=HR{xT)HH-1 where # = £,* and T = QL>r*. 
Hence A 0 is equivalent to an isotope A i of A in which products are de­
noted by [a, x] = aRx

l) where i ? ^ =2?»r. Also [x, a] =aLx
1} where Lx

l) = 
7Xa;. Let ƒ be the unity quantity ôf A\. Then I=Lf1)~TLf and 
T^Lf^Lf-u Hence R^^Rf-^. 'Therefore ^ ] = ^ 1 ) = ^ . i x 

= i?<r-i{a;(/-ia;)} ~i?(/-ia;)2 = jR/-ia;jR/-ia; = i?i1)^1) since 4̂ is alternative. Since 
B is equivalent to -4i, it follows that half of the alternative law holds 
inJ3. 

But similarly B is equivalent to an isotope A2 of A in which prod­
ucts are denoted by {x, a} = aL(2) where Lx

2) =Lxc-iy the element c being 
the unity quantity of A2. Then Lfx\x} = LX

2)LX
2\ and the second half of 

the alternative law holds in B. 
We complete the study of isotopy for simple alternative algebras 

by proving the following theorem. 

THEOREM 4. Let A be a Caytey-Dickson algebra, and B be any isotope 
of A with a unity quantity. Then B is equivalent to A. 

Any isotope with a unity quantity of a central simple algebra A 
with a unity quantity is also central simple. Therefore, any isotope B 
with a unity quantity of a Cayley-Dickson algebra A is also a Cayley-
Dickson algebra. We shall show that B is equivalent to A. 

For B is equivalent to an algebra A i in which products are denoted 
by [a, x\=aRx

l) where Rx
l) = R/-ix, the element ƒ being the unity 

quantity of A\. Now/ , as an element in A, is contained in some qua­
ternion subalgebra Q of A. Let x range over Q, and R be the subspace 
of A i consisting of all elements fx. Then #<-»ƒ# is an equivalence of Q 
and R. For since Q contains ƒ and is associative, [fx, fy] =fxRf-i/y 

=f(xy) for all x, y in Q. 
Let 5 be the involution of Q defined by (1), and let z=fx. Then 

the transformation 

U: z<->zU = f(xS) 

is the corresponding involution of R. Now A =Q+gQ as in (3). Also 
Ai = R+wR, where w=fg (and where the multiplication defining wR 
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is of course the multiplication in Ai). By the proof of Theorem 2, in 
order to show the equivalence of A and A i it is sufficient to show 
that [w, w] =yf and [w, z] = [zU, w] for every z of R. But [w, w] 
= w(f-*w) = (fg)(f~lfg) = fg* = yf9 and [w, z] = w(f^z) = (fg)(f-lfx) 
= (fg)x=g(x-fS) = (f-xS)g = (f.xS)(f-yg)=zU(f-iw) = [zU, w]. This 
proves the theorem. 

NEWPORT NEWS, VA. 

ON FIBRE SPACES. I 

RALPH H. FOX 

In subsequent papers I propose to investigate various properties 
of fibre spaces.1 The object of the fundamental Hurewicz-Steenrod 
definition1 is to state a minimum2 set of readily verifiable conditions 
under which the covering homotopy theorem1 holds. An apparent 
defect of their definition is that it is not topologically invariant. In 
fact, for topological space X and metrizable non-compact space B the 
property "X is a fibre space over B" depends on the metric of B. 
The object of this note is to give a topologically invariant definition 
of fibre space and to show that (when B is metrizable) X is a fibre 
space over B in this sense if and only if B has a metric in which X is a 
fibre space over B in the sense of Hurewicz-Steenrod. Since the defini­
tion of fibre space is controlled by the covering homotopy theorem, 
an essential part of my program is to give a topologically invariant 
definition of uniform homotopy. 

Let 7T be a continuous mapping of a topological space X into an­
other topological space B. Let A=A(J3) denote the diagonal set 
2^&£.B(&, b) of the product space BXB and let w denote the mapping 
of XXB into BXB which is induced by the mapping T according to 
the rule ïr(x, b) = {ir{x)t b). Thus the graph G of T is the set 7r_1(A), 
and 7T~1(C7) is a neighborhood of G whenever U is a neighborhood 
of A. 

Any neighborhood U of A determines uniquely a covering of B by 
neighborhoods Nu(J>) according to the rule b'£:Nu(b) when (&, b')&J. 

Received by the editors January 13, 1943. 
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