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In this note we denote by G a compact connected Lie group. We 
shall be interested in the situation where G acts as a topological 
transformation group2 on a space E. Such a group is called effective 
if the identity is the only element of G which leaves every point of E 
fixed. If G is transitive on E, that is, for any two points x and y of E 
there is an element g of G such that g(x) =y, then E is called a 
homogeneous space or a coset space of G. Our purpose is to prove the 
following theorem: 

THEOREM. If a compact connected Lie group G is transitive and 
effective on a space E homeomorphic with an n-dimensional torus (topo­
logical product of n circles), then G is isomorphic with the n-dimensional 
toral group Tn (direct product of n circle groups) and no element of G 
except the identity leaves any point of E fixed. 

We use a method of proof which has some similarity to a method 
we have used in studying groups transitive on spheres.3 

Let H' be a compact, connected, simply connected Lie group, let 
Ti be an /-dimensional toral group, and let N be a finite normal sub­
group of the direct product H' X Ti such that G is continuously iso­
morphic to the factor-group (HfXTi)/N.* Let H' go into H by the 
homomorphism obtained by factoring with respect to N and let Ti go 
into K. The group K is also an /-dimensional toral group, and H and 
K are subgroups of G which span G or generate G. The elements of H 
commute with the elements of K, in fact K is a central subgroup of G. 

Let x be an arbitrarily chosen point of E and let Hx, KX} and Gx be, 
respectively, the subgroups of H, K, and G which leave x fixed. Let 
Kx be the subgroup of K consisting of those elements k such that 
k(x) is in the orbit H(x). The orbit Kx(x) is the intersection of 
H(x) and K(x). I t can be seen that if y=g(x) then Ky = gKxg~l and 
Hy = gHxg~1. Since K is a central subgroup we see that Ky=Kx. 
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Because G is transitive the last remark shows us that every ele­
ment of Kx leaves every point of E fixed, and this together with the 
fact that G is effective implies that Kx contains only the identity 
element. The orbit K(x) is therefore homeomorphic to K and con­
sequently I, the dimension of K, must be less than or equal to ny the 
dimension of E. 

We denote by 5Ci(5) the one-dimensional homology group with 
rational coefficients of the space S. If a compact connected Lie group 
is mapped in the natural way on one of its orbits (namely by consider­
ing the orbit as a coset space of the group) then the one-dimensional 
homology group of the group manifold is mapped onto the one-
dimensional homology group of the orbit. This follows from the fact 
that the mapping can be carried out in two steps, the first being a 
fibering of the group with respect to a connected subgroup, and the 
second being a finite covering. In both steps the one-dimensional 
homology groups (with rational coefficients) are mapped onto the 
one-dimensional homology groups of the respective spaces. 

We now apply the above remark to the group G and the orbit E. 
The homology group 3Ci(E) is an ^-dimensional vector space, that 
is the first Betti number of E is n. Therefore the first Betti number 
of G is at least n, and from this we see that the first Betti number of 
H' X Ti must be at least n. However the first Betti number of Hf X Ti 
is / and we see that / is greater than or equal to n. 

The above results show that I equals n. I t follows that the orbit 
K(x) is the whole of E which means that K is transitive on E. We 
see therefore that Kx(x) = H(x). Since K*(x) is homeomorphic to Kx 

and since H(x) is connected it follows that Kx is connected. There­
fore Kx as a connected subgroup of a toral group must itself be a toral 
group of some dimension greater than zero or it must contain only the 
identity element. But from the fact that 3Ci(iJ)=0 it follows that 
3Ci[i7(x)]==0. Hence 3d(Kx) =0 and Kx contains only the identity 
element, and H(x) =x . The point x was chosen arbitrarily so that the 
equation H(x) = x holds for every x in E. Because G is effective this 
means that H contains only the identity element and that G=K 
which proves the theorem. 

The same proof applies if instead of assuming that E is an w-dimen-
sional torus we merely assume that it is an ^-dimensional space the 
first Betti number of which is n. I t then follows in view of the above 
proof that E is a torus. If we drop the assumption that G is effective 
the "effective group" will be a toral group of dimension n as before. 
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