
THE PELL EQUATION IN QUADRATIC FIELDS 

IVAN NIVEN 

Consider the equation 

(i) e - w = i, 
where 7 is a given integer of a quadratic field F, and integral solu­
tions £, 77 are sought in F. It has been shown1 that equation (1) has 
an infinite number of solutions if and only if 7 is not totally negative 
when F is a real field, and 7 is not the square of an integer of F when 
F is imaginary. We now obtain the following result : 

Let 7 be such that equation (1) has an infinite number of solutions. 
If F is a real field it is possible to find a solution £1, rji of (1) so that every 
solution is given by the equations 

(2) , . n = 1, 2, 3, • • • , 
V = {tti + V ' V ) B - ({1 - 71 /2»hH/(271 /2), 

i / awd tm/;y i / 7 w ^0/ a totally positive non-square integer of F. If F 
is imaginary it is always possible to find a solution £1, 771 so that all 
solutions are given by (2). 

The latter result is known to hold for the Pell equation in the ra­
tional field. The expression y1/2 is ambiguous, but no confusion will 
arise provided it consistently has the same value (we shall specify its 
value in certain cases). We consider the four sets ±£, ±rj to be a 
single solution, so tha t equations (2) give "every solution" in the 
sense that one of the four is present for some value of n. 

Case 1. F realt 7 positive but not totally positive. I t will be con­
venient to consider 71/2, £ and rj positive. We now show that there is 
but a finite number of solutions of (1) with £ bounded, say £<iV. For 
suppose we have an infinitude of solutions £;, rji with &<N for 
i = 1, 2, 3, • • • . Taking conjugates in equation (1) we would have 

- 2 2 

ii - yrji = 1, 

and since —7 is positive, this implies that | ; ^ 1 for i — 1, 2, 3, • • * . 
But it is not possible to have an infinite set of real quadratic integers 
which, along with their conjugates, are bounded. 
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1 Quadratic diophantine equations in the rational and quadratic fields, Trans. Amer. 
Math. Soc. vol. 52 (1942) p. 2 Theorem 4. We refer to this paper as (Q). 
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Hence there exists a least £, say £1, among the positive solutions 
of (1) ; the corresponding 77, say 771, is also a least value. Thus we have, 
among the £+71/2?7, a minimum value £i+71/2r?i; it is unique, since 
otherwise y112 would be an element of F, contrary to hypothesis. Now 
any solution £, 77 must correspond to a rational integer n such that 

(£1 + 71/2*h)n S £ + 7ll2V < (£1 + 7 1 /V) n + 1 . . 

Multiplying by (£1 —71/27ji)n we have 

1 g ({ + 71/2r/)(£i - 7 i ; V) n < {1 + V ' V 

The central term is of the form £2+71/27j2, £2 and rj2 being integers 
of F. On multiplying this central term by %2 — yl,2r}2 we see that £2, 7j2 

is a solution of (1); also neither £2 nor 772 is negative. But since 
£i+71/2*7i j s the j e a s t ^ t h pOSitive £ and 77, we must have £2 = 1, 
772 = 0 and hence 

£ + 71/2r/ = (£i + 7 1 / V ) n . 

This implies equations (2). 
Case 2. ƒ? real, 7 negative but not totally negative. All solutions of (1) 

are obtained by taking conjugates of solutions of 

(3) e - iv = 1, 
so the problem reduces to Case 1. The particular solution £1, 771 can 
be obtained in this case by taking the conjugate of the least positive 
solution of (3). 

Case 3. F real, 7 a perfect square in F {and hence totally positive). 
Let 7 = a2, where a is a positive integer in F. We prove that there is 
only a finite number of positive solutions of (1) with %+arj bounded. 
Any solution gives us two integers of the field £+0:77 and £ — «77, with 
product unity. But two integers of a real quadratic field have this 
property only if one is the conjugate, or the negative of the conjugate, 
of the other. Hence we can write £+«77 = p, £—0:77= ± p . Taking £, 77 
and a positive we have p > 1 and 1 > | p\ > 0 . But there is only a finite 
number of integers p which exceed 1, are bounded, and possess the 
property pp= ± 1 . Thus among the infinitude of solutions of (1) there 
exists one having £+«77 a minimum. I t is unique; for if £i+a7ji 
= £2+0:772 with, say, £i>£2 and 771 < 772, then not both £1, 771 and £2, 772 
can satisfy (1). Hence we proceed as in Case 1 to derive all solutions 
from this unique smallest one. 

Case 4. F real, 7 totally positive but not a perfect square in F. We 
shall show that (1) has infinitely many solutions with £ bounded. 
In Lemma 2 in §3 of (Q) it is proved that if 7 is positive but not 
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totally positive there are infinitely many solutions of (1); we shall 
make direct use of this proof. 

Note first that the infinitude of solutions obtained are such that £ 
is bounded. To prove this, we observe that the integer p introduced 
in connection with the infinite series (10) in (Q) is bounded, as also 
is its conjugate; this is seen from inequality (9) and the argument fol­
lowing. And since £ is obtained in (15) by dividing £r£s — yVrVs by p 
we can obtain | by multiplying |r£«-~ ivrVs by the reciprocal of p, 
both of which are bounded: the first because of (8), and the second 
because the reciprocal of p does not exceed p, which is bounded. In­
stead of obtaining the infinitude of solutions as suggested in (Q) (see 
the sentence immediately preceding Lemma 3), we can get them by 
compounding the first pair in (11) with all subsequent pairs, and thus 
| is bounded for all resulting solutions. 

Next we note that the proof of Lemma 2 in (Q) is valid if 7 is a 
totally positive non-square integer of F. Two remarks should be made 
in explanation : after inequality (9) the argument used to show that 
the left side of (7) cannot be zero needs a slight alteration; the result 
follows from the fact that 71/2, or 3, cannot be an element of F> by 
hypothesis; also the inequality just preceding (10) must be changed 
since 7 is now positive; the essential idea, that | 2 — yfj2 is bounded 
is still correct. 

Thus the proof of Lemma 2 of (Q) can be used to obtain the result 
that our present equation (1) has infinitely many solutions with £ 
bounded, 7 being totally positive but not a square. But £ and ij are 
solutions of 

ê - yrj2 = 1, 

7 also being totally positive but not a square ; interchanging £, rj and 7 
with their conjugates we have the result that our equation (1) has 
infinitely many solutions with £ bounded. 

Now if there were some least positive solution £1, 971, we could pro­
ceed as in Case 1 and derive all solutions from it by equations (2). 
But £ in equations (2) is bounded for only a finite number of values 
of n. Thus we cannot obtain all solutions by such a scheme. 

Case 5, F imaginary, 7 not a perfect square in F. We first show that, 
except for trivial solutions ± 1, 0, we cannot have | £+71/2rç| = 1: For 
otherwise [ £ —Y 1 / 2 I ; | = 1 , and the inequality 

(4) | {| £ (1/2) I £ + y^v I + (1/2) I { - 7w«, I 

would give us | £| ^ 1, yielding only a trivial solution. Hence for con­
venience we can choose the sign of £ (or rj) so that 
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U + 71 / 2^| > 1, U ~ 7 1 / 2 t ? | < 1. 

Next we show that two essentially different solutions £i, rji and 
£2, y\i cannot be such that 

Ui + 71/2*h| = U 2 + 71/2^|. 

For if this were the case we would have another solution £3, rjz defined 
by 

£3 = £i£2 — 7TO2, m = £n?2 — £2*71. 

I t would follow that 

I £3 + 71/2*?31 = Ui — 7 1 ' V I • I (2 + 7l/2^21 = 1, 

and by the argument above, £3= ± 1 and 773 = 0. These imply that 
£1 = ±£2, rjx= ±V2> 

Now I £+71/2rç| is less than any given positive value N>1 for but 
a finite number of solutions of (1) ; for by (4) if | ^+y1/2rj\ is bounded 
so is I £| , and this cannot be bounded for an infinite set of integers 
of an imaginary quadratic field. Hence there exists a unique non-
trivial solution of (1) having | £+71/2rç| a minimum, and we can pro­
ceed as in Case 1. 
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