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1. Introduction. We submit here new proofs, from a uniform point 
of view, of the theorems of Beltrami and Kasner on linear families of 
curves. Beltrami's result is that a surface 5 may be mapped upon a 
plane x so that its geodesies correspond to straight lines if and only 
if 6* is of constant gaussian curvature [ l ] . 1 Kasner's result states 
that a complete system of isogonal trajectories of a simple (that is, 
one-parameter) family of curves F is linear if and only if F is iso­
thermal [2]. We shall also deduce from our work another theorem of 
Kasner stating that a surface S can possess exactly <x>2 isothermal 
families of geodesies (maximum possibility) if and only if S is of con­
stant gaussian curvature [3]. 

2. Velocity systems. For the development of our proofs, it is found 
necessary to consider certain classes of 002 curves, namely, velocity 
systems, natural families, isogonal systems, To and Y families. In 
Kasner's study of dynamical trajectories [4], an important class of 
002 curves was encountered which he termed velocity systems. In 
minimal coordinates (u=x+iy, v = x — iy), any such system is defined 
by a second order differential equation of the form 

(1) v" = v'(c - <fo'), 

where c and d are arbitrary functions of («, v). 
Special types of velocity systems are natural families and isogonal 

systems. Any natural family is a velocity system for which cv=dUl 

whereas any isogonal system is a velocity system for which cv = —du. 
A system of <*>2 curves is both natural and isogonal if and only if 

it is the complete set of isogonal trajectories of an isothermal family. 
Such set is called a conformai rectilinear wex2 and is denoted by r0 . 
Any family of this type is conformally equivalent to the 002 straight 
lines of the plane. A system T0 is a velocity system for which cv — du 

= 0. 

Presented to the Society, October 31, 1942 ; received by the editors August 5, 1942. 
1 The numbers in brackets refer to the references at the end of the paper. 
2 T h e set of <*>2 integral curves of any differential equation of second order 

y" =*F(x, y, y') has been termed a wex by Kasner. The transformation theory of r 0 

systems has been developed by Kasner and DeCicco, Transformation theory ofisogonal 
trajectories of isothermal families, Proc. Nat . Acad. Sci. U.S.A. 1942. 
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3. The r families.3 Any set of <*>2 curves which is conformally 
equivalent to the set of <*>2 circles orthogonal to a fixed proper circle 
(or a fixed straight line) is called a V family. A T0 system may be 
considered as the limiting case of a T family by letting the radius of 
the fixed circle approach zero. The T families are special types of 
velocity systems. 

THEOREM 1. A velocity system represents a V family if and only if 
the functions c and d with cv5*0 and du^0 satisfy any one of the three 
equivalent systems of partial differential equations of second order 

\£ • 1 / Cuv CC<pt Cxiv == aCi)y 

^Z . Zij d"uv ~~ G/Q"u,i auu == CCLu) 

yZi .Oj Cj) — 0"K,y C<uv ~~ CC<vy Ctuv == aCy 

The last set of equations shows that every T family is a natural 
family. But of course not every natural family is a T family. 

THEOREM 2. A V family (including T0) is a velocity system which 
contains exactly <*>2 isothermal families. 

A velocity system may contain exactly °o2, oo1, one, or no iso­
thermal families. There are no other possibilities. 

4. Proof of Kasner's linear characterization of isothermal families. 
We shall now state and prove Kasner's first theorem. A proof em­
ploying a complicated theorem on general linear families due to Lie 
and R. Liouville, has been given elsewhere [2], but we shall prove it, 
beginning with basic principles. The result holds for the plane or any 
surface. 

THEOREM 3. A simple (that is, one-parameter) family of curves is 
isothermal if and only if the complete set of its isogonal trajectories is a 
linear system. 

Under any point transformation 

(3) U = * ( * , v), V = >P(u, v), 

with jacobian / = 0 W ^ ~ 0 ^ * 3 ^ 0 , the oo2 straight lines in the (£7, V)~ 

3 It has been proved by Kasner that the only systems of oo2 circles which are 
given by second order differential equations of the cubic type y" =Ay'*-\-By'2-\-Cy' 
+.D, where A, B, C, D, are functions of (x, y), are the r and To families. For additional 
properties of T and To families see Kasner and DeCicco, Geometry of velocity systems, 
Bull. Amer. Math. Soc. vols. 48-49 (1942-1943). 
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plane correspond to the <*>2 curves in the (u, *>)-plane given by the 
differential equation of second order 

(4) Jv" = Av'z + Bv'2 + Cv' + D, 

where 

A = (frvv&v — <t>v1pvvf D = <t>uu^u — <t>u^Puuy 

( 5 ) B = (<l>vv*Pu — <l>ii)pvv) + 2((j>uv\l/v — <j)v\p-Uv), 

C = ((fruutv — 4>v^uv) + 2((j)uv\f/u ~ <l>utyuv)-

Now if (4) represents a velocity system, we must have A =J9 = 0. 
We assume first both cf>u and <j>v not zero, and find 

(6) yp = a{u)<t> + b(u), $ = a(v)4> + 0(v). 

By substituting the first value of \p into B and J , and then sub­
stituting the second value of x// into C and / , we find that our functions 
c and d defining the velocity system (1) are given by 

<t>uu 2<t>uav <j>vv 2(j>vau 

( 7 ) c = y d = 
<i>u OLV(J> + @v 0 V au(j> + bu 

The equations (6) show that <f> = ((3 — b)/(a — a). Substituting this 
value of </> into (7), we find that any linear velocity system must be 
given by 

duuffi — b) + buu(a — OÙ) 2(auPv ~ otvbu) 
c au(P — b) + bu(a — a) av{fi — b) + pv(a — a) 

(8) 
oivv(fi — b) + j8vt,(a — a) 2(aufiv — avbu) 

d = av(P — b) + jS„(a — a) att(/3 — J) + bja — a) 

Differentiating c with respect to v and d with respect to u, and per­
forming certain additions and subtractions, we find 

3(aww6w — tfj>ww) [a„(0 — b) + jff,(a — a)] 
Q I Zi(J,»i — "— ———————————— _____— j 

[a.(|S - * ) + *«(«-«)]* 
3(ac^j3„ — a„|8„t,) [aM(/3 — i) + 6»(a — «)] 

— t/ij I ö'ïf —• r II * 

[a . ( |8- 6) + j 8 „ ( f l - <*)]2 

Now impose the condition cv = — dw for isogonal systems. The addi­
tion of the preceding equations shows that 

QtvvPv """"" OivPvv (*"uuOu ~~~ Q"uOuu 

[«,08 - J) + /S,(_t - a ) ] 3 [a.(/3 - 6) + bu(a - a ) ] » 
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Assuming that the numerators of both of these fractions are not 
zero, the second order partial derivative with respect to u and v of 
the logarithm of this equation leads to the same equation but with 
the sign of one fraction changed. The addition and subtraction of this 
new equation and (10) prove that the numerators must be zero. This 
contradiction leads us to the fact that the numerators of both frac­
tions in (10) must be zero. 

Since the numerators of (10) are zero, it follows from (9) that 
cv =du — 0. Therefore the only possible linear isogonal systems are the 
T0 families. That these are linear follows from the definition of T0 

systems. This completes the proof of Kasner's theorem in the gen­
eral case. See §6 for special case. 

5. The linear natural families. Next we shall state and prove the 
following result. (This could also be deduced from Beltrami's theorem 
but our purpose here is to obtain it independently.) 

THEOREM 4. A natural family of curves is linear if and only if it is 
a Y or r'o family. 

By Theorem 3, we already know that a T0 family is a linear natural 
family. Hence we can exclude this case, and we may assume that at 
least one of the first factors in the right-hand members of equations 
(9) is not zero. 

By this last remark, it is found by taking the logarithmic deriva­
tive of the first of equations (9) with respect to v and of the second 
with respect to u that 

(11J cvv -p 2éduv == a\cv -f- 2du), Zcuv -j- u>uu == c\Zcv -J~ du)» 

Note that if either one of the first factors on the right-hand members 
of equations (9) is zero, the functions c and d must still satisfy the 
equations (11). 

Now imposing the condition cv=du for a natural family, it is found 
by (11) and Theorem 1 that our linear natural family must be a V 
family. Since V and T0 systems are linear natural, it is seen that 
Theorem 4 is proved in the general case. See §6 for special case. 

6. Proofs of Theorems 3 and 4 in the special cases. We shall prove 
our theorems for the case where c/>v = 0 and 0 ^ 0 . The other case 
where 0W = O and 0VT^O is of course similar. For our special case, it is 
seen that in order that the differential equation (4) be a velocity sys­
tem, the function \[/ must be given by 

(12) * = a(v)<j> + / ?0 ) . 



*943l THEOREMS OF BELTRAMI AND KASNER 411 

The functions c and d defining the velocity system are then 

,A „ N 4>uu 2av(j)u , OLvv4> + Pvv 
(13) C = ; </ = 

<t>u (X-v<t> + fiv OLv<t> + fiv 

Differentiating the first with respect to v and the second with re­
spect to u, we find 

' £(f>u\&vvPv OivPvv) <pu\Otvvpv OLvpvv) 
(14) Cv = ; du = 

(av<t> + pvy {av<t> + §vy 
The condition cv=—du for an isogonal system, or the condition 

cv = du for a natural system shows that in either case we must have 
cv = du = 0. Therefore in our special case it is found that the only pos­
sible linear isogonal or linear natural systems are the To families. This 
completes the proof of both Theorems 3 and 4 in the special cases. 

7. Kasner's characterization of surfaces of constant curvature by 
isothermal families. Before proceeding with the proof of Kasner's 
second theorem, it is necessary to discuss some preliminary material. 
A natural family is a conformai image upon a plane of the geodesies of 
a general surface S. If x = const, and y = const, represent an isother­
mal net on S, the metric ds for S is given by 

(15) ds2 = le^^dudv. 

The natural family is then a velocity system for which 

(16) c = Xw, d — \v. 

The gaussian curvature G of S is G = — e~x\uo. 
Now we state and prove the following result. 

THEOREM 5. The conformai map of the geodesies of a surface S upon 
a plane is a Y or T0 family if and only if S is of constant gaussiân 
curvature. It is a T0 family if and only if S is developable. 

The proof of this result is easily obtained by eliminating c and d 
from equations (2.3) and (16) and deducing from these two new equa­
tions that G must be constant. Of course, S is developable if and only 
if X is a harmonic function, and therefore if and only if a conformai 
image upon a plane of its geodesies is a T0 family. 

Now we shall state and prove Kasner's characterization of surfaces 
of constant curvature by isothermal families. 

THEOREM 6. A surface S can possess exactly <*>2 isothermal families 
of geodesies if and only if S is of constant gaussian curvature. 
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For let a surface 5 possess exactly oo2 isothermal families of geo­
desies. Our surface S can be mapped upon a plane so that its geodesies 
are represented by a natural family which contains exactly oo2 iso­
thermal families. By Theorem 2, the natural family must be a T or r 0 

system. From Theorem 5, we see that S must be of constant gaussian 
curvature. 

The converse may be proved by the reversal of the argument of 
the preceding paragraph. Thus Theorem 6 is completely proved. 

Kasner showed that the surfaces can be classified into three dis­
tinct types with respect to the number of isothermal families of geo­
desies: (1) the surfaces of constant curvature—exactly oo2; (2) the 
surfaces applicable to surfaces of revolution but of variable curva-
ature—exactly one, and (3) the surfaces not applicable to surfaces of 
revolution—none. 

8. Beltrami's theorem. We shall now show how Beltrami's theorem 
may be deduced from our preceding work. 

THEOREM 7. A surface S may be mapped upon a plane so that its 
geodesies correspond to straight lines if and only if S is of constant 
gaussian curvature. 

Let a surface 5 be mapped upon a plane T by a point transforma­
tion 7\ so that its geodesies correspond to straight lines. Now there 
exists a conformai transformation 7^ of S upon w so that the geo­
desies are represented by a natural family. Therefore the product 
TiTr1 carries the natural family into straight lines. By Theorem 4, 
the natural family must be a T or T0 system. Therefore by Theorem 5, 
our surface S must be of constant gaussian curvature. 

Conversely, by the reversal of the steps involved in the preceding 
argument, it may be shown that a surface of constant curvature may 
be mapped upon a plane T SO that its geodesies correspond to straight 
lines. This completes the proof of Beltrami's Theorem 7. 
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