A NOTE ON COMPLEMENTARY SUBSPACES IN A
RIEMANNIAN SPACE

YUNG-CHOW WONG!

1. Introduction.? Let

(11) x‘=x"(u“), Kv)\rﬂ’1’=1;"'7";ayb:"'ff=1;"'ym’
be the equations of a V,, in a V,, with fundamental tensor g\, and let
K I's 600“

(1.2) B, = 0,2 = .
Ju’

Then the fundamental tensor and curvature tensor of V,, in V, are,
respectively,

Nk

(1 3) ,gcb = g)\chBby
(1.4) Hy = D.B, = B, 4 TB.By — 'TB.,
where D denotes the generalized covariant differentiation with re-
spect to V,, in V,; and T, and T, are, respectively, the Christoffel
symbols of the second kind for V, and V.

By definition a V,, in V, is said to be totally semi-umbilical’ in V,
if a vector v, exists such that

(1 .5) va;:l;x = ,gcb

is satisfied at every point of V,. In particular, this condition is
evidently fulfilled when Hg* has the form Hj ='gsn*, n* being a
certain vector; in this case we call V,, totally umbilical in V,.

In what follows we shall consider the subspaces V,: x?=const. in
a V, with fundamental tensor of the form

| 8eb 0 a’yb»"'yf=1y""my
(1.6) g)\,=( ),
0 g Heg -, s=m+1,- -, n
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The two families of subspaces V.: x?=const. and V,_n,: x®=const.
are called completementary families of subspaces in V,. Recently,
Yano! proved that a condition for V,, to be totally umbilical in V, is
that g» be of the form5 g, =0(x*)g.s(x?). We shall obtain, among
other results, a similar condition for V,, to be totally semi-umbilical
in V,.

2. First normal complex. Let w® and y* be two arbitrary vectors in
Vm. Then the vector y‘wbHj’ spans the first normal complex of
Vm in V,, whose dimensionality m, is therefore equal to the rank of
the matrix [H;*]. In this matrix, as well as in every matrix appearing
hereafter, k or p indicates the column and the combination of
b, ¢, - - - the row.

Now for the subspaces V,,: x?=const. in a V, with fundamental
tensor (1.6), we have

«  0x* p ,
(2'1) Ba = = 6av 8cb = fcby
dx®
(2.2) Hy' =T — 'Ta, Hy'=Ta.

But from (1.6) and the definition of the Christoffel symbols of the
second kind

T = (1/2)g" (3ugn + g — i)
it follows at once that

e »

a
—
Pcb - Iwcby Fcb

2.3 .
(2.3) e

Thus (2.2) become

- (l/z)gpqaqgcb’

ab
(1/2)g" 98 Tor = (1/2)g" 9e8re-

I

(2.4) Hy'=0, Hy =— (1/2)g 9ser-

And therefore the dimensionality m; of the first normal complex
of V., in V, is equal to the rank of the matrix [g?%,gs]. Since
Det (g»9) #0, m, is also the rank of the matrix [d,g4]. Hence® there

¢ K. Yano, Conformally separable quadratic differential forms, Proc. Imp. Acad.
Tokyo vol. 16 (1940) pp. 83-86. For n=m-+1 see L. P. Eisenhart, Riemannian
geometry, Princeton, 1926 p. 182.

8 Throughout this paper we denote by p, o, 6, ¢ scalar functions of x*.

6 See, for example, T. Levi-Civita, The absolute differential calculus, London,
1927 pp. 9-12,
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exist m; components of g, which are functionally independent with
regard to x?, such that each component of g, is expressible in terms
of them and x%. Conversely, it is evident from (2.4) that if g4 has this
property, the first normal complex of V,, in V, is of dimension m;.
Hence we have this theorem.”

THEOREM 2.1. The first normal complex of the subspaces x?=const.
in a V., with fundamental tensor (1.6) is of dimension mi, if and
only if the matrix [3,85] is of rank my, that is if g is of the form
b =g(X% p1, * * +, Pm,), Where the p's are my functions of x* which are
Junctionally independent with regard to x?.

Now it follows from (2.4) and Theorem 2.1 that the components
of the vector y“wbH,", which spans the first normal complex, are

yw Hy' = 0,
(2 ~5) c b__-- c b agcb agcb
YwHy = — (1/2)ywg” (——aqm + o dupm, ).

6p1 apm1
To see the implication of these equations let us consider a certain
fixed Vop—m: x*=x5. Each V,, of the family x?=const. has a point in
common with V,_,, at which the first normal complex of V,, lies in

the tangent space of V,_». Equations (2.5) then show that these first
normal complexes are orthogonal to the subspaces

a ¥ a b4
p1(®o, ) = const., - - -, pm,(%0, & ) = const.
of Vo_m

THEOREM 2.2. If a V, admits two complementary families of V., and
Viuem, then the first normal complexes, dimensionality mi, of V. at
points of any fixed V... are orthogonal to a family of subspaces
Vn—m—ml in Vn—m-

The condition for V,, to be minimal in V, is ‘g®®H;=0, which, by
(2.1) and (2.4), can be written g®d,gs=0, that is, 4, Det (gs)=0,
Hence this theorem follows.3

THEOREM 2.3. If a V, admits two complementary families of V., and
Vom, & necessary and sufficient condition for V,, to be minimal in V,
15 that V,_. determine a correspondence between them which preserves
volume.

7 For m; =0, see Eisenhart, loc. cit. p. 186 Example 13.
8 For n=m+1, see Eisenhart, loc. cit. p. 179.
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3. Totally semi-umbilical V,,. According to (1.5), (2.1) and (2.4),
the condition for x? =const. to be totally semi-umbilical in V, is that
a vector v? in V,_, exists such that v7d,g.,=gas, that is,

3.1) 279, log g = 1.
From this it follows that
(3.2) 270, log (gev/gea) = O.

Now if the first normal complex of V,, in V, is of dimension m,, then
by Theorem 2.1 g4 is of the form

(3.3) 8ecb = gcb(xar P1, * Pml)-
Consequently, (3.2) gives

9 0
(3.4) 018—— log (gev/gea) + -+ = + Om, 5 log (ge5/gea) = 0,
o1

Pm,
where
(3.5) 01 = 170,01, -+ + , Omy = VP9 ppmye

Conversely, let m; functions 6y, - - -, 0,, exist satisfying (3.4).
Then since py, * -, pm, are independent with regard to x?, the matrix

[0,01, - + +, 0ppm,] is of rank m;. Therefore, the system of linear
equations (3.5) has solutions for »?; that is, v? exist satisfying (3.2)
and also (3.1). Hence, when (3.3) is true, (3.4) is a necessary and
sufficient condition for V, to be totally semi-umbilical in V,.

On the other hand, by a well known theorem? on the essential
parameters of a set of functions, equation (3.4) is also the condition
that there exist m;—1 functions oy, -+ +, om,—1 of %% and the p’s
(and therefore of x*) such that g./g. is expressible in terms of them
and x¢; that is, that g is of the form

(3'6) 8eb = Um1g0b(xa1 (25 PR o'ml—l)'

It is seen that g3 cannot be expressed in terms of x* and less than
mi1—1 independent (with regard to x?) functions ¢’s; otherwise, ga
would be expressible in terms of x* and less than m; functions, and
consequently by Theorem 2.1, the first normal complex of V,, in V,
would be of dimension less than m;.

THEOREM 3.1. In a V, with fundamental tensor (1.6), each of the
subspaces x?=-const., whose first normal complexes are of dimension

® See, for example, L. P. Eisenhart, Continuous groups of transformation, Prince-
ton, 1933, p. 9.
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my, 1S totally semi-umbilical in V,, if and only if ge is of the form

8cb = Um,gcb(xay 01y * * " a'ml-l),
where the o's are my functions of x* which are independent with regard
to x?.

For m;=1, we have Yano's result quoted in §1.

4. Normal complexes of higher order. We now return to the end of
§2 and consider the matrix

K

B.
4.1) < Hy'

DH .,

Let m; and m, be, respectively, the dimensionalities of the first and
second normal complexes of V, in V,, then the rank of the above
matrix is m~+mi+ms. Taking account of (2.3), (2.4) and

ok Lk P c .. Lk
DyH,q = 0;H.q + TwH.q B,‘f‘ - ,FdeecK - IF;eHcd

we can easily prove from (4.1) that the following matrices are all of
rank m;+m,:

< H;;,”) < H' ) ( £790g8eb >
DH.') \oH.. +TnH.i/)  \gr8,8,8.a + (1/2)(8;87)8,8.a/
(4.2)

( apgcb >
919p8ea + (1/2)8pe(0787)0:g ca .

The last matrix shows that, unlike m,, the dimensionality m, of the
second normal complex of V, in V, depends not only on the nature
of gs but also on that of g,,.

If gop=gqp(x"), that is, if the complementary V,_. are totally
geodesic in V, (cf. Theorem 2.1 for m;=0), the matrix (4.2) reduces

to
< 9p8ed )
pdigea)
This matrix is of rank m;-+m., and therefore gs, 97g.4 can be ex-
pressed in terms of x* and m;-+m. (but not less) functions of x* which
are independent with regard to x?. But

8cb = gcb(xa, PL ", Pml),

(4.3)
078ed = do + ¢19sp1+ * + + + Im,91Pmy
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where the ¢’s are some functions of x¢ and the p’s. Therefore the first
and second normal complexes of V,, in V, are of dimension m; and ms,
if and only if (4.3) is true and d;py, - * -, O7pm, are expressible in terms
of x% p1, * + -, pm,, and mq other functions pm,+1, * * * , Pm,+my Which,
together with py, « -+, pm,, form m;+m, functions independent with
regard to x?.

This being the case, we have

agcb agcb
6pgcb = - apPl + -+ — apﬂmn
9p1 Opm,
0058 ca 0978 ca
apafged = apPl + -+ : PPm+mye
P1 8pml+m1

But if we, y¢, 22 are three arbitrary vectors in V,,, the vectors y“wbH’
and #/y*wiD H, span the first two normal complexes of V,, in V..
Therefore by an argument similar to that which led to Theorem 2.2,
we conclude that the first two normal complexes of V,, at points of a
fixed V,—n are orthogonal to a family of Vi m—m,—my i Vym.

The above result can easily be extended to cover the normal com-
plexes of higher order of V,, in V,; indeed we have the following two
theorems.

THEOREM 4.1. In a V, with fundamental tensor

e = (nggxx) gqp?xr))’

the normal complexes of the subspaces x?=const. are of dimension

my, ma, - - - if and only if the matrices
9p8et >
3,8, .
( 8 ”)’ (a,.a,ged !
are of ranks my, my+ms, - - -, vespectively.

THEOREM 4.2. If a V, admits two families of complementary V., and
Vaem and if Vo_n are totally geodesic in V,, then the firstl (I=1,2, - - +)
normal complexes of V., at points of any fixed V,_n are orthogonal to a
family of Va-mmi—mg--ommy % Vo,
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