A NOTE ON COMPLEMENTARY SUBSPACES IN A RIEMANNIAN SPACE

YUNG-CHOW WONG1

1. Introduction.² Let

$$(1.1) x^{\kappa} = x^{\kappa}(u^{a}), \kappa, \lambda, \mu, \nu = 1, \cdots, n; a, b, \cdots, f = 1, \cdots, m,$$

be the equations of a V_m in a V_n with fundamental tensor $g_{\lambda\kappa}$ and let

$$(1.2) B_a^{\kappa} = \partial_a x^{\kappa} \equiv \frac{\partial x^{\kappa}}{\partial u^a}.$$

Then the fundamental tensor and curvature tensor of V_m in V_n are, respectively,

$$(1.3) 'g_{cb} = g_{\lambda\kappa}B_c^{\lambda}B_b^{\kappa},$$

$$(1.4) H_{cb}^{\kappa} = D_c B_b^{\kappa} \equiv \partial_c B_b^{\kappa} + \Gamma_{\mu\lambda}^{\kappa} B_c^{\mu} B_b^{\lambda} - \Gamma_{cb}^{a} B_a^{\kappa},$$

where D denotes the generalized covariant differentiation with respect to V_m in V_n ; and $\Gamma^{\kappa}_{\mu\lambda}$ and ${}^{\prime}\Gamma^a_{cb}$ are, respectively, the Christoffel symbols of the second kind for V_n and V_m .

By definition a V_m in V_n is said to be *totally semi-umbilical*³ in V_n if a vector v_n exists such that

$$v_{\kappa}H_{cb}^{\prime\prime} = {}^{\prime}g_{cb}$$

is satisfied at every point of V_m . In particular, this condition is evidently fulfilled when $H_{cb}^{..\kappa}$ has the form $H_{cb}^{..\kappa} = 'g_{cb}n^{\kappa}$, n^{κ} being a certain vector; in this case we call V_m totally umbilical in V_n .

In what follows we shall consider the subspaces V_m : $x^p = \text{const.}$ in a V_n with fundamental tensor of the form

$$(1.6) g_{\lambda\kappa} = \begin{pmatrix} g_{cb} & 0 \\ 0 & g_{qp} \end{pmatrix}, a, b, \cdots, f = 1, \cdots, m, \\ p, q, \cdots, s = m + 1, \cdots, n.$$

Received by the editors, April 22, 1942.

¹ The author is a Chinese Ying-Keng Funds student. He wishes to thank Professor D. J. Struik for the conversations they had from time to time during his stay at Cambridge, Massachusetts.

For the theory of subspaces V_m in a Riemannian n-space V_n , see Schouten-Struik, Einführung in der neuern Methoden der Differentialgeometrie II, Groningen, 1938 chap. 3.

³ D. Perepelkine, Sur la courbure et les espaces normaux d'une V_m dans R_n , Rec. Math. (Mat. Sbornik) N.S. vol. 42 (1935) pp. 81-100.

The two families of subspaces V_m : $x^p = \text{const.}$ and V_{n-m} : $x^a = \text{const.}$ are called *completementary families* of subspaces in V_n . Recently, Yano⁴ proved that a condition for V_m to be totally umbilical in V_n is that g_{cb} be of the form⁵ $g_{cb} = \sigma(x^x)\bar{g}_{cb}(x^a)$. We shall obtain, among other results, a similar condition for V_m to be totally semi-umbilical in V_n .

2. First normal complex. Let w^a and y^a be two arbitrary vectors in V_m . Then the vector $y^c w^b H_{cb}^{...\kappa}$ spans the first normal complex of V_m in V_n , whose dimensionality m_1 is therefore equal to the rank of the matrix $[H_{cb}^{...\kappa}]$. In this matrix, as well as in every matrix appearing hereafter, κ or p indicates the column and the combination of b, c, \cdots the row.

Now for the subspaces V_m : $x^p = \text{const.}$ in a V_n with fundamental tensor (1.6), we have

$$(2.1) B_a^{\kappa} = \frac{\partial x^{\kappa}}{\partial x^a} = \delta_a^{\kappa}, 'g_{cb} = g_{cb},$$

$$(2.2) H_{cb}^{\cdot \cdot a} = \Gamma_{cb}^{a} - \Gamma_{cb}^{a}, H_{cb}^{\cdot \cdot p} = \Gamma_{cb}^{p}.$$

But from (1.6) and the definition of the Christoffel symbols of the second kind

$$\Gamma_{\mu\lambda}^{\kappa} = (1/2)g^{\kappa\nu}(\partial_{\mu}g_{\nu\lambda} + \partial_{\lambda}g_{\nu\mu} - \partial_{\nu}g_{\mu\lambda})$$

it follows at once that

(2.3)
$$\Gamma_{cb}^{a} = '\Gamma_{cb}^{a}, \qquad \Gamma_{cb}^{p} = -(1/2)g^{pq}\partial_{q}g_{cb},$$
$$\Gamma_{cq}^{a} = (1/2)g^{ab}\partial_{q}g_{cb}, \qquad \Gamma_{cr}^{p} = (1/2)g^{pq}\partial_{c}g_{rq}.$$

Thus (2.2) become

(2.4)
$$H_{cb}^{\cdot \cdot a} = 0, \qquad H_{cb}^{\cdot \cdot p} = -(1/2)g^{pq}\partial_q g_{cb}.$$

And therefore the dimensionality m_1 of the first normal complex of V_m in V_n is equal to the rank of the matrix $[g^{pq}\partial_q g_{cb}]$. Since Det $(g^{pq}) \neq 0$, m_1 is also the rank of the matrix $[\partial_p g_{cb}]$. Hence⁶ there

⁴ K. Yano, Conformally separable quadratic differential forms, Proc. Imp. Acad. Tokyo vol. 16 (1940) pp. 83-86. For n=m+1 see L. P. Eisenhart, Riemannian geometry, Princeton, 1926 p. 182.

⁵ Throughout this paper we denote by ρ , σ , θ , ϕ scalar functions of x^{k} .

⁶ See, for example, T. Levi-Civita, *The absolute differential calculus*, London, 1927 pp. 9-12.

exist m_1 components of g_{cb} , which are functionally independent with regard to x^p , such that each component of g_{cb} is expressible in terms of them and x^a . Conversely, it is evident from (2.4) that if g_{cb} has this property, the first normal complex of V_m in V_n is of dimension m_1 . Hence we have this theorem.

THEOREM 2.1. The first normal complex of the subspaces $x^p = const.$ in a V_n with fundamental tensor (1.6) is of dimension m_1 , if and only if the matrix $[\partial_p g_{cb}]$ is of rank m_1 , that is if g_{cb} is of the form $g_{cb} = g_{cb}(x^a, \rho_1, \dots, \rho_{m_1})$, where the ρ 's are m_1 functions of x^k which are functionally independent with regard to x^p .

Now it follows from (2.4) and Theorem 2.1 that the components of the vector $y^{\epsilon}w^{b}H_{\epsilon b}^{\cdot,\kappa}$, which spans the first normal complex, are

$$y^{c}w^{b}H_{cb}^{\cdot \cdot a} = 0,$$

$$(2.5) \qquad y^{c}w^{b}H_{cb}^{\cdot \cdot p} = -(1/2)y^{c}w^{b}g^{pq}\left(\frac{\partial g_{cb}}{\partial \rho_{1}}\partial_{q}\rho_{1} + \cdots + \frac{\partial g_{cb}}{\partial \rho_{m}}\partial_{q}\rho_{m_{1}}\right).$$

To see the implication of these equations let us consider a certain fixed V_{n-m} : $x^a = x_0^a$. Each V_m of the family $x^p = \text{const.}$ has a point in common with V_{n-m} , at which the first normal complex of V_m lies in the tangent space of V_{n-m} . Equations (2.5) then show that these first normal complexes are orthogonal to the subspaces

$$\rho_1(x_0^a, x^p) = \text{const.}, \cdots, \rho_m(x_0^a, x^p) = \text{const.}$$

of V_{n-m} .

Theorem 2.2. If a V_n admits two complementary families of V_m and V_{n-m} , then the first normal complexes, dimensionality m_1 , of V_m at points of any fixed V_{n-m} are orthogonal to a family of subspaces V_{n-m-m_1} in V_{n-m} .

The condition for V_m to be minimal in V_n is $'g^{cb}H^{\cdot,\kappa}_{cb}=0$, which, by (2.1) and (2.4), can be written $g^{cb}\partial_p g_{cb}=0$, that is, ∂_p Det $(g_{cb})=0$. Hence this theorem follows.⁸

Theorem 2.3. If a V_n admits two complementary families of V_m and V_{n-m} , a necessary and sufficient condition for V_m to be minimal in V_n is that V_{n-m} determine a correspondence between them which preserves volume.

⁷ For $m_1 = 0$, see Eisenhart, loc. cit. p. 186 Example 13.

⁸ For n = m + 1, see Eisenhart, loc. cit. p. 179.

3. Totally semi-umbilical V_m . According to (1.5), (2.1) and (2.4), the condition for $x^p = \text{const.}$ to be totally semi-umbilical in V_n is that a vector v^p in V_{n-m} exists such that $v^p \partial_p g_{cb} = g_{cb}$, that is,

$$(3.1) v^p \partial_p \log g_{cb} = 1.$$

From this it follows that

$$(3.2) v^p \partial_p \log (g_{cb}/g_{ed}) = 0.$$

Now if the first normal complex of V_m in V_n is of dimension m_1 , then by Theorem 2.1 g_{cb} is of the form

$$(3.3) g_{cb} = g_{cb}(x^a, \rho_1, \cdots, \rho_{m_1}).$$

Consequently, (3.2) gives

$$(3.4) \quad \theta_1 \frac{\partial}{\partial \rho_1} \log (g_{cb}/g_{ed}) + \cdots + \theta_{m_1} \frac{\partial}{\partial \rho_{m_1}} \log (g_{cb}/g_{ed}) = 0,$$

where

(3.5)
$$\theta_1 = v^p \partial_p \rho_1, \cdots, \theta_{m_1} = v^p \partial_p \rho_{m_1}.$$

Conversely, let m_1 functions $\theta_1, \dots, \theta_{m_1}$ exist satisfying (3.4). Then since $\rho_1, \dots, \rho_{m_1}$ are independent with regard to x^p , the matrix $[\partial_p \rho_1, \dots, \partial_p \rho_{m_1}]$ is of rank m_1 . Therefore, the system of linear equations (3.5) has solutions for v^p ; that is, v^p exist satisfying (3.2) and also (3.1). Hence, when (3.3) is true, (3.4) is a necessary and sufficient condition for V_m to be totally semi-umbilical in V_n .

On the other hand, by a well known theorem⁹ on the essential parameters of a set of functions, equation (3.4) is also the condition that there exist m_1-1 functions $\sigma_1, \dots, \sigma_{m_1-1}$ of x^a and the ρ 's (and therefore of x^a) such that g_{cb}/g_{ed} is expressible in terms of them and x^a ; that is, that g_{cb} is of the form

$$(3.6) g_{cb} = \sigma_{m_1} \bar{g}_{cb}(x^a, \sigma_1, \cdots, \sigma_{m_1-1}).$$

It is seen that \bar{g}_{cb} cannot be expressed in terms of x^a and less than m_1-1 independent (with regard to x^p) functions σ 's; otherwise, g_{cb} would be expressible in terms of x^a and less than m_1 functions, and consequently by Theorem 2.1, the first normal complex of V_m in V_n would be of dimension less than m_1 .

THEOREM 3.1. In a V_n with fundamental tensor (1.6), each of the subspaces $x^p = const.$, whose first normal complexes are of dimension

⁹ See, for example, L. P. Eisenhart, *Continuous groups of transformation*, Princeton, 1933, p. 9.

 m_1 , is totally semi-umbilical in V_n , if and only if g_{cb} is of the form

$$g_{cb} = \sigma_m, \bar{g}_{cb}(x^a, \sigma_1, \cdots, \sigma_{m,-1}),$$

where the σ 's are m_1 functions of x^{κ} which are independent with regard to x^p .

For $m_1=1$, we have Yano's result quoted in §1.

4. Normal complexes of higher order. We now return to the end of \$2 and consider the matrix

$$\begin{pmatrix} B_a^{\kappa} \\ H_{cb}^{\kappa} \\ D_f H_{ed}^{\kappa} \end{pmatrix}.$$

Let m_1 and m_2 be, respectively, the dimensionalities of the first and second normal complexes of V_m in V_n , then the rank of the above matrix is $m+m_1+m_2$. Taking account of (2.3), (2.4) and

$$D_f H_{ed}^{\cdot \cdot \kappa} = \partial_f H_{ed}^{\cdot \cdot \kappa} + \Gamma_{\mu \lambda}^{\kappa} H_{ed}^{\cdot \cdot \lambda} B_f^{\mu} - \Gamma_{fd}^{c} H_{ec}^{\cdot \cdot \kappa} - \Gamma_{fe}^{c} H_{ed}^{\cdot \cdot \kappa}$$

we can easily prove from (4.1) that the following matrices are all of rank m_1+m_2 :

$$\begin{pmatrix}
H_{cb}^{\cdot,p} \\
D_{f}H_{ed}^{\cdot,p}
\end{pmatrix}, \quad
\begin{pmatrix}
H_{cb}^{\cdot,p} \\
\partial_{f}H_{ed}^{\cdot,p} + \Gamma_{fq}^{p}H_{ed}^{\cdot,q}
\end{pmatrix}, \quad
\begin{pmatrix}
g^{pq}\partial_{q}g_{cb} \\
g^{pq}\partial_{f}\partial_{q}g_{ed} + (1/2)(\partial_{f}g^{pq})\partial_{q}g_{ed}
\end{pmatrix},$$

$$\begin{pmatrix}
\partial_{p}g_{cb} \\
\partial_{f}\partial_{p}g_{ed} + (1/2)g_{pq}(\partial_{f}g^{qr})\partial_{r}g_{ed}
\end{pmatrix}.$$

The last matrix shows that, unlike m_1 , the dimensionality m_2 of the second normal complex of V_m in V_n depends not only on the nature of g_{cb} but also on that of g_{qp} .

If $g_{qp} = g_{qp}(x^r)$, that is, if the complementary V_{n-m} are totally geodesic in V_n (cf. Theorem 2.1 for $m_1=0$), the matrix (4.2) reduces to

$$\binom{\partial_{p}g_{cb}}{\partial_{p}\partial_{f}g_{ed}}.$$

This matrix is of rank m_1+m_2 , and therefore g_{cb} , $\partial_f g_{ed}$ can be expressed in terms of x^a and m_1+m_2 (but not less) functions of x^s which are independent with regard to x^p . But

$$(4.3) g_{cb} = g_{cb}(x^a, \rho_1, \cdots, \rho_{m_1}),$$

$$\partial_f g_{ed} = \phi_0 + \phi_1 \partial_f \rho_1 + \cdots + \phi_m, \partial_f \rho_m,$$

where the ϕ 's are some functions of x^a and the ρ 's. Therefore the first and second normal complexes of V_m in V_n are of dimension m_1 and m_2 , if and only if (4.3) is true and $\partial_f \rho_1, \dots, \partial_f \rho_{m_1}$ are expressible in terms of x^a , $\rho_1, \dots, \rho_{m_1}$, and m_2 other functions $\rho_{m_1+1}, \dots, \rho_{m_1+m_2}$, which, together with $\rho_1, \dots, \rho_{m_1}$, form m_1+m_2 functions independent with regard to x^p .

This being the case, we have

$$\partial_{p}g_{cb} = \frac{\partial g_{cb}}{\partial \rho_{1}} \partial_{p}\rho_{1} + \cdots + \frac{\partial g_{cb}}{\partial \rho_{m_{1}}} \partial_{p}\rho_{m_{1}},$$

$$\partial_{p}\partial_{f}g_{ed} = \frac{\partial \partial_{f}g_{ed}}{\partial \rho_{1}} \partial_{p}\rho_{1} + \cdots + \frac{\partial \partial_{f}g_{ed}}{\partial \rho_{m_{1}+m_{2}}} \partial_{p}\rho_{m_{1}+m_{2}}.$$

But if w^a , y^a , z^a are three arbitrary vectors in V_m , the vectors $y^c w^b H_{cb}^{-\rho}$ and $z^f y^c w^d D_f H_{cd}^{-\rho}$ span the first two normal complexes of V_m in V_n . Therefore by an argument similar to that which led to Theorem 2.2, we conclude that the first two normal complexes of V_m at points of a fixed V_{n-m} are orthogonal to a family of $V_{n-m-m_1-m_2}$ in V_{n-m} .

The above result can easily be extended to cover the normal complexes of higher order of V_m in V_n ; indeed we have the following two theorems.

THEOREM 4.1. In a V_n with fundamental tensor

$$g_{\lambda \kappa} = \begin{pmatrix} g_{cb}(x^{\kappa}) & 0 \\ 0 & g_{qp}(x^{r}) \end{pmatrix},$$

the normal complexes of the subspaces $x^p = const.$ are of dimension m_1, m_2, \cdots if and only if the matrices

$$\left(\partial_{p}g_{cb}\right), \left(\frac{\partial_{p}g_{cb}}{\partial_{p}\partial_{f}g_{\epsilon d}}\right), \ldots$$

are of ranks $m_1, m_1+m_2, \cdots,$ respectively.

THEOREM 4.2. If a V_n admits two families of complementary V_m and V_{n-m} and if V_{n-m} are totally geodesic in V_n , then the first l ($l=1, 2, \cdots$) normal complexes of V_m at points of any fixed V_{n-m} are orthogonal to a family of $V_{n-m-m_1-m_2\cdots m_1}$ in V_{n-m} .

CAMBRIDGE, MASS.