
DUAL GEODESICS ON A SURFACE 

C. E. SPRINGER 

Introduction. Union curves and dual union curves have been de­
fined and studied in projective space by Sperry.1 I t is well known that 
the union curves of the congruence of normals to a metric surface 
are the geodesies on the surface. The principal aim of this note is to 
obtain the differential equation of the dual geodesies on a metric 
analytic surface in ordinary space. 

The notation of Eisenhart2 will be employed for the most part. 
However, Tpy will be used here as the Christoffel symbol of the 
second kind. Greek indices will take the range 1,2, and Latin indices 
the range 1, 2, 3. 

1. Ray-point corresponding to a point of a curve on the surface. 
The tangent planes to the surface S (xi==xi(u1

t u2)) a t the point 
P(x{) and at two "successive" points of the curve C (ua = ua(s)) on 
•S are given by 

(£* - xi)Xi = 0, 

dXi 

(1) J du° 

/ d2xi dxi \ dxi dxi 

(£• - *9 ( u'°u'P H «"« ) = u'«u'V, 
\duaduP du01 J du01 du? 

where the primes indicate differentiation with respect to s. 
The ray-point3 R of the curve C corresponding to the point P is 

the point of intersection of the three planes (1). The coordinates of R 
are given by 

i i jk adXl dxl dXv ,a ,£ „ 
{2) ó(£ — x) = oavX u u u , 

dua du? duy 

where i,j, k take the values 1,2,3 cyclically, bj£ is a Kronecker delta, 
and 5 is defined by 
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(3) 
18, dX' n( d*Xk ,a # dXk „ A 

O = OijkX1 U ( U U ~\ U 1 . 

dW* \duadu^ dua / 

The tangents to the parametric curves at P , and the normal to the 
surface at P constitute a local system of reference. In order to deduce 
the local coordinates of the point R from equations (2), we employ the 
formulas from Eisenhart,4 

(4) 

(5) 

(6) 

a n d 

(7) 

we use 

dua 

d2Xk 

duaduP 

TM -
1 a8 — 

t h e fact t h a t 

- dart?' 

dXk _ 7 
— r«0 -
duv 

a 
duP 

123 i dX1' àXk 

dijkX —- —-
dw du1 

dua 

- hapX , 

- a dayVvfi', 

1/2 
= g 

to obtain for the first par t of the expression for S 

m t dX' d*X" ,„ ,, n 
OijkX U U U 

(8) duv duadu^ 
1/2 T I €2 T2 el ~ M /« fB n 

= g (g g - g g jdyrd^TadU U U . 

On summing out r and e, and on writing | ga/3| = g~\ the right member 
of (8) reduces to 

/r>\ - 1 / 2 ar —-M ,a ,8 n 
iy) g Oudyad^ri apU U U . 

In consequence of (4), we have for the second part of the expression 
for 5 

/^x * 1 2 3 ^ * d X ' d X k ' a "V ™ ^ i b % i do°k j j -*<> 8T ' a "V (10) dijkX u u = OijkX daydasg g u u . 
du" dut du' du' 

On summing a and r, and on making use of (7), the right member of 
(10) takes the form 

(11) g 1 / 2 ( r Y 2 - glVWaydpiUW, 

which, in turn, reduces to 

4 Eisenhart, loc. cit., p. 217, p. 257. 
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(12; g ondaadprU u . 

Because of (9) and (12), equation (3) takes the form 

(13) ô s g ôi2(a7<raMTl â w w w + da<,dpTu u ). 

In order to express the right member of (2) as a linear combination 
of the partial derivatives dxi/dua

t we use the definition 

dXl dxl 

(14) — — = - d*, 
dua duP 

jk a dXv 1/2 2adX% 

oavX = eh h ) 

and also the formulas from Eisenhart5 

— = eh11 

du1 dua 

(15) 
jk <r dXv 1/2 la dXl 

oavX = — eh h ; 
du2 dua 

where i,j, k take the values 1, 2, 3 cyclically, and where e is + 1 or 
— 1 according as the Gaussian curvature is positive or negative. In 
consequence of (14), (15), and (4), the right member of (2) assumes 
the form 

(16) eh1i*dapH'au'fi(unh** - u'2hu)daTgTÔ — • 
du8 

If we multiply the equation6 

(17) had = daydfHgl* 

by daT and sum on a, and then multiply the resulting equation by 
W0 and sum on j8, we obtain 

(18) d" = hfi'dpsgr*. 

Because of (18), the expression (16) may be written in the form 

/ 1 n . 1/2 /« ,0 12 / 7 <r« ÔX* 

(19) eh dapu u oy(Tu d > 
du8 

which is the expression desired for the right member of equation 
(2). Use of (13) and (19) in (2) yields the coordinates £* of the ray-
point R of the curve C (ua = ua(s)) at the point P(xl) in the form 

6 Eisenhart, loc. cit., p. 259. 
6 Eisenhart, loc. cit., p. 253. 
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(20) f =x +e(hg) daRU u — 
Ôr2(dyad,rT^UfaUf^y + da^TUf-U^) OU8 

The local coordinates rj8 of the point R are given by 

8 12 ,y <r8 

rj dy<ru a 

(21) = ddafiUW 

where S is not summed, and where d= \ dap\ has the value e(hg)112. 

2. Dual geodesies. We consider next the line l2 lying in the tangent 
plane to the surface at P which is in G. M. Green's "relation JR"7 to 
the normal h to the surface at P . It can readily be shown that the 
equation of the line l2 in local coordinates is 

(22) (g22)U2rW + (gu)1/2rî2^2 + (gug22)1/2 = o. 
A geodesic curve on the surface has the property that its osculating 

plane at every point P contains the normal line h to the surface at P. 
We may define a dual geodesic to be a curve on the surface which 
enjoys the property that its ray-point R corresponding to every 
point P lies on the line l2 given by (22). If we require that the co­
ordinates (21) satisfy the equation (22), we find, after some reduc­
tion, that the curve C is a solution of the differential equation 

(23) dôaflU u + [dap(dyiTi2 — dy2Ti2) + ^^dy^d^Yap]u u u = 0 , 

where F ^ is given by (6). 
If we write ul = u, u2 — v, dn = D, di2 =d2 i = £>', d22 = Z}", v' =dv/du, 

v" =d2v/du2, and make use of (6), equation (23) takes the form 

(24) (DD" - D'2)v" = p + gv' + rv'2 + sv'\ 

where 

p = D'DU - DD'U + (2r2
2 - Tn)DD' - TnD'\ 

q = D"DU - DDÜ + D'DV - DD'V + (DD" + D'*)(2Y\2 - Y\X) 

+ DV22 + DD\vl2 - 2rî2) - 2D'D"TU, 

(25) r = D"DV - DD" + D"D'U - D'DU 

+ (DD" + D,\Y\2-2Y\2)--D
,'*Y\1 

+ D'D"(2T12 - Tn) + 2DD'r\it 

s = D"D'V - D'D't + ( l 4 - 2Y\2)D
,Dn + v\j)'* . 

7 Lane, loc. cit., p. 81. 
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If the asymptotic lines are taken as parametric, we have D—D" = 0, 
and equation (24) takes the form 

(26) v" = rîx + (Tn - 2 I \ V + (2rî2 - r a V * - i i / . 

The geodesies on a surface satisfy the differential equation8 

(27) v" = - rîx + (rîx - 2 I \ 2 y + (2Tn - i i ) / + T^v*. 

From (26) it is seen that if the asymptotic curve given by v = const, 
is a dual geodesic, then r n = 0, which, by (27), is the condition that 
the curve be a geodesic. But if a curve is both an asymptotic and a 
geodesic it is a straight line. Hence, if an asymptotic line is a dual 
geodesic it is a straight line. 

Equation (26) is independent of D'. Hence, we conclude that 
isometric surfaces have the same equations of dual geodesies. 

It can be shown that when the asymptotics are parametric the 
directions of Segrè9 at the point P on the surface are given by 

(28) Tudu* - v\2dv = 0. 

Comparison of equations (26) and (27) shows that the directions of 
Segrè may be characterized as the directions in which the geodesies and 
dual geodesies coincide. 

3. Ray-points of geodesies. Each curve through the point P on the 
surface has a ray-point R. We shall now find the locus of the ray-
points for all geodesies through P. Along a geodesic curve we have 

(29) u'a + Ta
pyu\n = 0. 

In consequence of (29) and the definition of Fjjp from (6), the co­
ordinates (17l, rj2) of the ray-point R of a geodesic curve ua = ua(s) 
through P are found from (21) to be given by 

TV = - (gu)1/1(« ,1)1(« /1), 
( TV = a 2 2 ) i / 2 (^ i ) (^ 2 ) 2 , 

where 

(31) T = r W 1 ) 8 + TUufl)\u2) - rUu^Xu2)2 - vUu'*)*. 

Elimination of un and u'2 between the equations (30) yields a cubic 
equation which may be written in the form 

8 Eisenhart, Differential Geometry, Ginn and Co., 1909, p. 205. 
9 Lane, loc. cit., p. 77. 
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1 3 2 3 

(32) 1 2 2 1 

(«ng22) i / 2 \(gu) i / 2 (gMyn 

From the form of equation (32) it can be seen that the locus has a 
double point at P , with the asymptotics at P as double point tan­
gents. Furthermore, the curve has three points of inflection which lie 
on the line represented by equation (22), some one of the inflections 
lying on each of the lines through P given by the equation 

(33) Tn(— ^ + r î 2 ( — ^ = 0. 

On comparing equations (28) and (33), we recognize that the latter 
gives the directions of Darboux10 at P. Hence, we have the following 
theorem. The locus of the ray-points of the geodesies through a point P 
on a surface is a cubic curve lying in the tangent plane to the surface 
at P. The asymptotics are the double point tangents to the curve at P , 
and the three points of inflection of the curve are given by the intersec­
tions of the tangents of Darboux at P with the line which is in Green's 
Relation R with the normal to the surface at the point P . Lane11 gives a 
similar theorem for projective space. 

UNIVERSITY OF OKLAHOMA 

10 Lane, loc. cit., p. 76. 
11 Lane, loc. cit., p . 98. 

. . . 


