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Paley and Wiener1 have formulated a criterion for a set of func­
tions {gn} to be "near" a given orthonormal set {/w}. The interest 
of this criterion is that it guarantees the set {gn} to have expansion 
properties similar to an orthonormal set.2 In particular, they show 
that the set \gn) approximately satisfies Parseval's formula. In the 
first part of this paper we show that, conversely, if a set {gn} ap­
proximately satisfies Parseval's formula then there exists at least one 
orthonormal set which it is "near." 

In the second part of the paper we consider sets which are on the 
borderline of being near a given orthonormal set. 

The last part of this paper gives a simple formula for constructing 
sets near a given orthonormal set. As an application of this formula 
we obtain new properties of the so called non-harmonic Fourier series. 

We shall handle these problems abstractly, using the notation of 
Hubert space.3 Subscript variables are assumed to range over all 
positive integers and ]>j shall mean a sum over all positive integers. 
By a finite sequence shall be meant a sequence with only a finite num­
ber of nonzero members. For application to the space L2 the norm of 
a function f(x) is defined in the usual way as ||/|| = (fa \f(x) \ 2dx)112. A 
complete set which satisfies the Paley-Wiener criterion shall be 
termed strongly complete. 

The principal novelty in the proof is the association of a linear 
transformation G with each set of elements {gn}- Thus if {ypn} is an 
orthonormal setwe defineG^Ard'n =T^^ngnfor every finite sequence of 
constants {an}. The norm of G is the limit superior of \\GX\\ for ele­
ments x such that \\x\\ = 1. With this definition of norm the aggregate 
of bounded linear transformations clearly forms a normed linear 

Presented to the Society, April 12, 1940 under the title Converse of a closure theorem 
of Paley and Wiener, and September 5,1941 under the title A Paley-Wiener type ex-
pansion theorem; received by the editors October 8, 1941. 

1 R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, 
American Mathematical Society Colloquium Publications, vol. 19, 1934, p. 100. 

2 R. P. Boas, Jr., Journal of the London Mathematical Society, vol. 14 (1939), 
p. 242; Duke Mathematical Journal, vol. 6 (1940), p. 148; American Journal of 
Mathematics, vol. 63 (1941), p. 361. 

3 Because of the difficulty of finding adequate references to non-separable Hubert 
space we confine ourselves to separable space. However, our theorems remain true for 
non-separable Hubert space provided the range of subscript variable is redefined. 
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space. I t is in this space that the concept of one sequence of functions 
being "near" another is made precise; thus two points are "near" if 
they are within unit distance of each other. 

1. A converse theorem. We prove the following theorem. 

THEOREM A. Suppose that the set of elements {gn} satisfies the rela­
tion 

(i) (i-e)(EU.|2)1/2^IIE««gn|| g a + WZKI2)1 '2 

for every finite sequence of constants {an} and for some fixed number 
6; 0 ^ 6 < 1. Then there exists an orthonormal set \fn} such that 

(2) II !>»(ƒ*-S„)|| gÖ(EU»|2)1/2. 
PROOF. Relation (1) guarantees that the set \gn) is linearly in­

dependent; hence the closure of all linear combinations of the set 
{gn} is an infinite-dimensional manifold, a Hilbert space. Let {ypn\ be 
some complete orthonormal set of this Hilbert space and define the 
transformation G by G^anXpn^^dngn- Thus if y^^ajf/n we may 
express relation (1) in the form 

(3) (l-ö)IHI * I N | :g(l + 0)|M|. 
The following lemmas are well known :4 

LEMMA 1. A bounded linear transformation whose range and domain 
both determine Hilbert space may be factored in the form FP where Fis a 
unitary transformation and P is a positive definite self-adjoint trans­
formation. 

LEMMA 2. If S is a self-adjoint transformation then 

INI/INI 
and 

| (Sx, x) | / O , x) 

have the same upper and lower bounds. 

Clearly G satisfies the conditions of Lemma 1, so G=FP. From 
relation (3) it follows that 

( l - t f ) | | y | | ^ | | P y | | g ( l + 0)|M|. 

4 M. H. Stone, Linear Transformations in Hilbert Space and Their Applications to 
Analysis, American Mathematical Society Colloquium Publications, vol. 15, 1932; 
J. von Neumann, Annals of Mathematics, (2), vol. 33 (1932), p. 308; A. Wintner, 
Mathematische Annalen, vol. 37 (1933), p . 257. 
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Moreover, this inequality clearly remains valid if y is an arbitrary 
element; so by Lemma 2 

(1 - 6)(y, y) ^ (Py, y) ^ (1 + 6)(y, y). 

This may be written as 

- o(y, y) ^ (Py - y, y) £ o(y, y). 

Again using Lemma 2, we have ||;y—Py|l ^0||3/| | . Let usdefine/n = Fypn. 
Because P i s unitary it follows that {fn\ is an orthonormal set. More­
over, 

IIE *.(/".-«.)|| = \\Fy-Gy\\ 
= \\Hy - Py)\\ 

= \\y- Py\\ 

ge\\y\\ = 0(Zkl2)1 / 2 . 
2. The borderline case, 0 = 1. We now establish this theorem. 

THEOREM B. The set of elements {g„} and the orthonormal set {ƒ„} 
satisfy 

(4) IIE«.(/".-«Oil < ( Z M 2 ) 1 ' 2 

for every sequence of coefficients {an} such that 

0 < Z | an\
2 < oo. 

Then {gn} is complete if {ƒ„} is complete.5 

PROOF. If {gn} is not complete, there exists an element zsuch that 
(gn> z)=0 for all n. We can express z in the form z=^2anfny where 
0 < X | a n | 2 < o o . Thus 

|| E *»(ƒ» - gn)| |2 = ||*||2 - M ^ an(gn, z) + || £ angn | |* £ \\z\\\ 

This contradicts (4), and the theorem is proved. 
The following counterexample shows that the completeness of the 

set {gn\ does not imply that the orthonormal set {fn} is complete. 
Let {cn} be a sequence of constants such that cn>cn+i>\. Let {\f/n} 

5 The referee has pointed out tha t a mean ergodic theorem may be used to prove 
the following generalization of Theorem B. 

be a basis in B. Suppose {gn} is a se-
for all x=J2anfn in B. Then the ele-

Let B be a reflexive Banach space and let {ƒ« 
quence in B such that |Eö»V»~""g»)|| < I E a » / « | 
ments \gn\ span B. 

We have been able to extend his theorem to spaces whose unit sphere has weak 
sequential compactness. 
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be a complete orthonormal set. Define fn =^n+i andgn = ^+i—^nCn+iAw 
for w = 1, 2, • • • . Thus 

Z <*»(ƒ. - g«)ll2 = E < E i 

and so relation (4) is satisfied. Obviously the set {ƒ„} is not complete; 
however ^ \ cn |

2 = oo, so the set {gn} is complete. 
If the < sign is replaced by the ^ sign in relation (4), Theorem B 

is certainly false because some or all of the elements {gn} could be 
zero. Nevertheless, we are able to prove an analogue of Theorem A. 

THEOREM C. Let {gn} be a complete set and {fn} an orthonormal set 
such that 

(5) I I E <*»(ƒ•-s.)|| £ Œ U I 2 ) 1 ' 2 

for every sequence of constants {an} such that 

(6) 0<T,\"n\*< °°. 

Then 

(V) o < ||DarfJI ^2(Z\anyyi\ 
Conversely, the truth of (7) for a complete set {gn} and for every sequence 
of constants {an\ satisfying (6) implies the existence of a {complete) 
orthonormal set \fn) satisfying (5). 

PROOF. The novelty in the first part of this theorem is the appear­
ance of the strict inequality on the left side of (7). Suppose then, on 
the contrary, that {an} is a sequence for which ^a»g t t = 0. Let 
^anfn = z. Because {gn} is complete, there exists an element gc such 
that {gc, 2)7^0. Thus, according to (5), if X is a constant: 

|| X an{fn - gn) + \{fc - gc)|| S || J2 anfn + X/c||, 

||* + X/c - Agclj ^ II* + Vc||, 
- 2^\{gc, z) + I X |*{ I gc I* - 2<R(gc, fc)} S 0. 

This last inequality is clearly impossible for all values of X. The 
remainder of the proof is omitted as it parallels the proof of Theorem 
A. 

3. The method of separation of variables. We prove the following 
theorem. 

THEOREM D. Let {Cnk] , n, k = 1, 2, • • • , be a matrix of constants 
such that I Cnk\ Sck. Let {Tk} be a sequence of bounded linear trans-
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formations with corresponding bounds {tk}. Let {fn} be a complete 
orthonormal set, and define 

00 

gn = = Jn \ 7 j ^nk-L kjn* 

Then if^cktk <1, the set {gn} is strongly complete in the sense of Paley 
and Wiener. 

PROOF. Let {an} be an arbitrary finite sequence of constants. Then 

| Z) <*n(fn - gn)\\ = = 

= 

VII 
VII 

VII 

£ &n 7 J ^nk-L kjn 
\ n k 11 

i L / ^ * Z-j Cnkdnfn 
\ k n J1 

£ 
h 1 

J- k 7 J ^nk&njn 
1 n 1 

£<*| 
k 1 

7 J ^nk^njn 
I n 1 1 

yz hck 
k 

X ) <W* I • 
1 n II 

Thus the set {gn} satisfies the Paley-Wiener criterion (2) with 

A simple way to apply Theorem D depends upon the fact that 
multiplication by a bounded function is a bounded linear transforma­
tion of the space L2. In particular we consider the sequence of func­
tions {e**»*}, where {Xn}, » = 0, ± 1 , ± 2 , • • • , is a sequence of 
complex constants satisfying \\n — n\ ^L for some constant L. The 
interval under consideration is — 7r^x^7r . We may write 

çïhnx _ çinx _|_ X"* 
(iXn — in)1 

xKel 

k=i k\ 

Comparing with Theorem D, we have: 

Cnk = (i\n - *»)*/*!, ck = Lk/kl; 

Tk = Xk, tk = 7Tfc. 

Clearly, if L < l o g 2/w, the set {eiX»»*J is strongly complete in the 
interval ( —7r, T ) . (Actually the same is true in any interval of length 
2TT.) 



i942] AN EXPANSION THEOREM OF PALEY AND WIENER 855 

The transformations {xk} never attain their least upper bound. 
This fact permits Theorem B to be employed in showing that the 
set { ^ } is complete even if L = log 2/ir. The proof parallels the 
proof of Theorem D. 

The above results on the non-harmonic Fourier series are an exten­
sion of previous knowledge in two respects: In the first place, Paley 
and Wiener were forced to assume that {Xn} was a real sequence. 
Secondly, they6 obtained the value l/7r2 = .10+ where we have 
log 2/ir = .22 + • The best value for L is not known ; however a theorem 
of Levinson7 gives an upper limit of 1/4.8 

A second application of Theorem D is to furnish a proof of an 
analytic function expansion theorem of Boas.9 In turn, Boas* theorem 
contains analytic function expansion theorems of Birkhoff, Walsh, 
Takenaka, G. S. Ketchum and others. 

The operator in Theorem D, ^CnkTkj has been assumed to be a 
discrete series; however the method of separation of variables is still 
available if we replace the series by an integral or Stieltjes integral. 
In particular, Cauchy's integral formula is of the right form. 

UNIVERSITY OF ILLINOIS AND 

PURDUE UNIVERSITY 

6 Paley and Wiener, loc. cit., p. 113. A slightly better value than theirs has been 
obtained by Malin, thesis, Massachusetts Institute of Technology, 1934. 

7 N. Levinson, Annals of Mathematics, (2), vol. 37 (1936), p. 919; Gap and Density 
Theorems, American Mathematical Society Colloquium Publications, vol. 26, 1940, 
chap. IV. 

8 I t is a curious parallelism tha t log 2/TT and 1 / 4 are in the same ratio as the limits of 
Takenaka and Schoenberg in a somewhat similar unsolved problem. For references 
see R. P. Boas, Jr., Proceedings of the National Academy of Sciences, vol. 26 (1940), 
p. 139; Transactions of this Society, vol. 48 (1940), p. 485. 

9 R. P. Boas, Jr., Transactions of this Society, vol. 48 (1940), p. 473, Theorem 3.1. 


