
SOME TOPICS IN THE ARITHMETIC OF POLYNOMIALS 

L. CARLITZ 

1. Introduction. Let GF(pn) denote a fixed Galois (finite) field, 
and x an indeterminate. The arithmetic of polynomials in x with co­
efficients in GF(pn) is in many ways similar to ordinary arithmetic, 
and was discussed in some detail by Dedekind.1 As a matter of fact 
it appears that in many instances the arithmetic of polynomials is the 
simpler. Thus, for example, in the case of the analogues of the familiar 
arithmetic functions, in place of asymptotic formulas there are exact 
formulas for the polynomial domain. This is perhaps due to the possi­
bility of grouping polynomials according to degree. Again it is familiar 
that in the problem of representing a rational integer as a sum of an 
even number of squares there is a considerable difference between the 
case 2tS 8 and It > 8 ; in the former case the number of representations 
can be expressed in terms of divisor functions, while in the latter case 
this is in general impossible. For the polynomial case however the 
number of representations by an even number of squares can always 
be expressed in terms of divisor functions. Similar remarks apply to 
the case of an odd number of squares. 

In the present paper we rather arbitrarily select three or four topics 
in the arithmetic of polynomials in a Galois field. In §2 we consider 
the simplest arithmetic functions. In §3 we discuss the problem of 
representing a given polynomial as a sum of squares. In §4 we define 
various special polynomials and functions that are rather intimately 
connected with the arithmetic of polynomials in GF(pn) ; application 
to power sums are given in §5. Finally in §6 we define analogues of the 
ordinary Bernoulli numbers; the principal result here is the Staudt-
Clausen theorem. We remark that for the most part the extension of 
theorems from the coefficient field2 GF(p) to GF(pn) is quite trivial; 
however, in at least the last topic mentioned there appears to be some 
difference between the special and the general case. 

It is evident from the above that we are ignoring such questions 
as construction and distribution of irreducible polynomials, the exist­
ence of irreducibles in an arithmetic progression, theorems of reciproc-

An address delivered before the meeting of the Society in Hanover, N. H., on 
September 12, 1940, by invitation of the Program Committee under the title Arith­
metic of polynomials in a Galois field] received by the editors January 22, 1942. 

1 Journal für die reine und angewandte Mathematik, vol. 54 (1857), pp. 1-26. 
2 The field GF{p) may be defined as the set of residues (mod p). 
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ity and higher congruences generally, to mention a few obvious omis­
sions. We give a few references below.3 

2. Arithmetic functions.4 I t will be convenient to denote poly­
nomials in x by capitals A, B, » • • , Z ; elements of GF(pn) and ordi­
nary integers will be denoted by small letters. We write deg M for 
the degree of M and put \M\ — pnm, m = deg M; if the coefficient of 
the highest power of x in M is 1 we call M primary. The letter P will 
be reserved for irreducible polynomials. Evidently the number of pri­
mary polynomials of fixed degree m is pnm. Hence the J*-function for 
our domain becomes 

(2.1) f t o - E r r r r - E 
M I* w=0 pnm8 1 - pn^-8) 

for <ir\(s)>l; the first summation in (2.1) is taken over all primary 
polynomials. Now since the unique factorization theorem applies here 
we have 

- ƒ ( * ) 

where f(k) denotes the number of (primary) irreducible polynomials 
of degree k. Comparison with (2.1) leads to the identity 

ks\f(k) (2.2) 1 - ^u—> = I I (! - P~ks) 

by means of which it is easy to derive the familiar formula for ƒ(&). 
We remark that (2.2) can be considerably extended. 

Now define the Möbius function fx(M) by means of 

M(l) = 1, fx(M) = 0 for P2\ M, 

M(M) = ( - iy for M = Pi • • • Pr. 
Then 

_ p(M) _ / 1 \ 1 

t ' l i f l - VV \P\*) «5) ' ' 
3 See for example L. E. Dickson, Linear Groups, 1901, pp. 3-54; H. Kornblum, 

Mathematische Zeitschrift, vol. 5 (1919), p. 107; E. Artin, Mathematische Zeitschrift, 
vol. 19 (1924), pp. 153-246; O. Ore, Transactions of this Society, vol. 35 (1933), pp. 
559-584; L. Carlitz, American Journal of Mathematics, vol. 59 (1937), pp. 618-628. 

4 Compare American Journal of Mathematics, vol. 54 (1932), pp. 39-50. 
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and therefore 

— pn for m = 1, E KM) = { p 
degM=m I 0 for m > 1. 

Similarly the number of quadrat-frei (simple) polynomials of degree m 
Jg pnm pn(m—l)t 

In exactly the same way if d(M) denotes the number of (primary) 
divisors of M and <j)(M) denotes the Euler function (number of resi­
dues in a reduced residue system (mod M)) then we have the identi­
ties 

. KM) 
£ v^r = f 2 W = <* - Pna~s))-2i 
M I M\s 

<t>(M) = [(s- 1) = 1 - r ( 1 ~ s ) 

M | M | s f(s) 1 -#«<»-> ' 
by means of which it is easy to evaluate 

Z S(M), Z 0(Af). 
deg M=ra deg M=m 

We remark that ô(ikf) and ^(Af) may be generalized in the follow­
ing way 

(2.3) dk(M) Z 1, 

that is, the number of divisors of given degree k. Similarly 4>u{M) de­
notes the number of primary polynomials of degree k, each prime 
to M. These functions are useful in certain problems (see, for example, 
(3.8) below). 

3. Sums of squares.5 Assume p odd. Let t be an integer greater 
than 0; ÛJI, • • • , a«, ]8i, • • • , ]8f elements of GF{pn) such that 

(3.1) yi = ai + fii:^ 0, * = 1, • • • , /. 

Then if 7 = 7 1 + • • • +7*5^0, and M is primary of even degree 2k} we 
seek the number of solutions of 

(3.2) y M = aix\ + jSiFÎ + • • • + atx] + ptf] 

in primary X», F*- of degree &. We call the problem (A). 
Next if 71+ • • • +7* = 0, a 3^0, and M is primary of degree less 

then 2k, we seek the number of solutions of 
5 Compare Transactions of this Society, vol. 35 (1933), pp. 397-410; Duke Mathe­

matical Journal, vol. 1 (1935), pp. 298-315. 
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(3.3) CLM - axx\ + 0iFÏ + • • • + atx] + faxl 

We call this problem (B). 
The solution of these problems is given in terms of certain "di­

visor" functions now to be defined. For brevity we limit ourselves to 
the case of problem (A). Put 

( 1 \ a>k a=k 

i—:) Z M ' + ZUK 
P / A\M A\M 

where a = deg A, \A | = pna, the first summation is over all primary A 
dividing M and of degree greater than k, the second is over all pri­
mary A dividing M and of degree equal to k ; 

(3.5) m(M) = (i+—-Vz(- i)aUh+ Z ( - i)aUh 
\ Pnt/ A\M A\M 

the notation having the same meaning as in (3.4). Then the number of 
solutions of (3.2) is pt-i{M) or œt-i(M) according as 

( - l)««i • • • afix • • • ft 

is or is not a square in GF(pn). 
The proof of this theorem is by induction. The case t = \ is easily 

proved. For the rest it suffices to prove the following three formulas 

J^p8(A)pt(B) = P s + , + 1 (M) , 

(3.6) £ Ps(A)œt(B) = œs+t+1(M), 

J2us(A)œt(B) = p8+t+1(M), 

where the summation is over all primary A, B of degree 2k such that 

(3.7) (a + 0)M = aA + pB, 

and a, /3 are elements of GF(pn), a/3(a+/3)^0. We sketch briefly a 
proof of the first of (3.6); by introducing certain additional notation 
we may prove all three formulas simultaneously. 

It is convenient to make use of the divisor function bi(M) defined 
in (2.3). For this function we have the theorem6 

(3.8) £ ài(A)ô,(B) = (1 - p~«) Z UM) + 6i(M), 
a—i+l 

where k^j^i^2k, and the summation on the left is over all A, 

6 Proceedings of the London Mathematical Society, (2), vol. 38 (1934), pp. 116— 
124, in particular, p. 122. 
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B satisfying (3.7). Then by (3.4) 

2k 

£ Ps(A)Pt(B) = es6( £ pn^+it)g(i,j) + pnk('+l}g(k,k) 
i, y==fc-+-l 

2k 2fc 

+ €s£«*< X) PniSg(h k) + €#"*• X) Pn"g(k,j), 
i=k+l j=k+l 

where g(i, j) denotes the left member of (3.8) and et = l—p~nt. Now 
using (3.8) the proof of the formula in question follows without much 
difficulty. 

We have assumed p odd. For p = 2 the right member of (3.2) or 
(3.3) is a perfect square and therefore the problem is of no interest. 
However, in this case we may consider the number of solutions of 

yM = J2 (aix] + PiXiYi + 7iY*), 

where n o w J J ft-^O. It may be shown that results similar to the above 
still hold. The final form of the result depends on whether the quad­
ratic form a.iX2JrfiiXY-\-yiY2 is irreducible in GF(2n). As a special 
case of some interest we take 

(3.9) y M = p1X1Y1 + • • • + PtXtYt, 

where 

y = ft + • • • + ft ^ 0, ft * 0. 

Evidently the number of solutions of this problem in primary Xt-, Yi 
of degree k is 

(3.10) E ^ ( M x ) • • • Ô*(M«), 

the summation extending over primary Mi of degree 2k such that 
yM = piM!+ • • • +ptMt. But by (3.4) and the definition of ô{(M) it 
is clear that ök(M) =p 0 (M), so that (3.9) becomes 

X) Po(Mi) • • • po(Mt) = P<- I (M) , 

as follows from (3.6). Hence the number of solutions of (3.9) is 
pt-i(M). This result holds for all p. 

The situation for an odd number of squares is quite different. Cor­
responding to (3.2) we consider 

2 2 

(3.11) eM = «iXi + • * * + a2t+iX2t+i, 

where e = c*i+ • • • +0^+17^0, while to (3.3) corresponds 
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2 2 

(3.12) aM = cLxXi + • • • + «2*+iX2*+i, 

where <*i+ • • • +a2*-fi = 0, a?^0 arbitrary. 
Put 0 = ( — 1) *€ai • • • ce2*+i or ( — 1) (aa\ • • • a2*+i according as (3.11) 

or (3.12) is being considered. For simplicity we limit ourselves to the 
case M quadrat-frei. Then the number of solutions of (3.11) or (3.12) 
is given by 

p^'-^icTk + p****-! + (p2nt - pn)<Tk-2 + • • • 

where 

cry = cry(Mf) = E (M*M), 
deg A=j 

summed over primary A of degree j , and (6 M/A) is the quadratic 
residue symbol. The proof of (3.13) depends on the previous results 
for (3.2) and (3,3). 

We remark finally that the results of this section can be obtained 
by an entirely different method which applies to either an odd or even 
number of squares. This was suggested by Hardy's paper On the repre­
sentation of a number as the sum of any number of squares and in par­
ticular of five J However, we shall not take the space to discuss this 
method. 

4. Special polynomials and functions.8 Put 

F * = [ * ] [ * - 1 ] * * . . . [ I K ™ , F o = 1, 

L* = [ * ] [ * - l ] - - - [1], Xo= 1, 

where 

[k] = Xvnk - %. 

Then as is well known, [k] is the product of irreducible polynomials 
of degree a divisor of k. As for Fk and Lk, it may be shown that Fk 

is the product of the (primary) polynomials of degree k, while Lk is 
the least common multiple of these polynomials. 

Next consider 

(4.2) VU0= II (* + A), Mt) = t, 
deg A<,m 

where / is a second indeterminate and the product is over all A =A(x) 
of degree less than m. It is not difficult to show that (4.2) implies 

7 Transactions of this Society, vol. 21 (1920), pp. 255-284. 
8 Compare Duke Mathematical Journal, vol. 1 (1935), pp. 137-168. 
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(4.3) MO - Z ( - 1)̂ *1 J **n\ 

where the coefficients are determined by 

and are integral, that is, polynomials in x. Of the properties of \l/m(t) 
tha t follow from (4.3) we mention 

(4.4) $m(xt) = x#m(t) + [wfyf-iOO, 

(4.5) *m(0 = lAm-lW ~ Fnl^m-ltt). 

Also as a consequence of (4.2) we have 

(4.6) fm(M) =Fm 

for M primary of degree m. Note that 

4<m{t + u) = iM*) + ^ W , ypm{ct) = c^m(/) for c in GF(p»); 

we therefore call ^m(0 a "linear" polynomial. 
The formula (4.4) suggests the operator A defined by 

Ag(/) = g(atf) - xg(t)\ 

Ak is defined recursively by 

Ak^g(t) = Afcg(^) - x*>nfeAfcg(/). 

From these formulas it follows in particular that 

(4.7) A ̂ m(/) = [m] • • • [m - £ + l ] *£-*(*), w ^ *. 

Now let g(t) =^2aitpni be any linear polynomial in /. Clearly it may 
be expressed in the form $j3»^( / ) . The coefficients are readily deter­
mined by means of (4.7). Replacing / by tu we get the expansion 

(4.8) g{tu) = Z (WiM«)A 'g ( / ) . 
i 

Thus for g(t) =^m(0» (4.8) becomes 

(4.9) *m(to) = E l . >*.<«>£-<(/), 
t-o I t J 

while for g(/) =t^nm we get 
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(4.10) p™^Y^{ . Wi(0. 
*-o l * ; 

The coefficients in (4.9) and (4.10) are given by 

Cm \ Fm (m\ Cm\ 

% m—% 

and are integral. 
The polynomial \[/m(t) suggests the construction of a function van­

ishing for all A = A (x). We find that the function 
00 

(4.ii) m = E(- m^/Fi 

has the product expansion 

(4.12) ^{t) = tj\{\ 1, 

the product extending over all primary M. Hence ^(<4£) = 0 for all A. 
As for £ it may be defined by 

(4.13) £ = lim — 

It has recently been proved9 that £ is transcendental relative to the 
field GF(pn, x), that is, the field of rational functions in x with coeffi­
cients in GF(pn). 

Applying the operator A to yp(t) we find 

(4.14) $(xt) = # ( / ) - i K ( / ) ; 

repeated use of this formula leads to the multiplication formula 

(4.i5) HMt) = E (- ly^-^r-it), 

where M is primary of degree m. This in turn suggests the introduc­
tion of the linear polynomial O>M(U) defined by 

next put 
WM(u) = u !^W)^(B), 

AB=M 

with /x(J5) as in §2. Then WM(U) may be thought of as an analogue of 
the cyclotomic polynomial; in particular it is irreducible.10 

9 L. I. Wade, Duke Mathematical Journal, vol. 8 (1941), pp. 701-720. 
10 See Transactions of this Society, vol. 43 (1938), pp. 167-182. 
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Returning to (4.11) we find that the inverse of yp(i) is also of simple 
form, namely 

(4.16) X(*) = Ê(l/£<)*p W l . 
i = 0 

As for the convergence of (4.11) and (4.16) if we take 

(4.17) * = ckx*+ • • • +co + — + • • • , 
X 

where the Cj are all in GF(pn), then \f/(t) converges for all / while \(t) 
converges only for k ^ 1. 

I t follows from (4.11) and (4.12) that 

(4.18) Ht + MQ = m + HMO = .*(/), 

for arbitrary M ; in other words \f/(t) has the period £. This property 
can be generalized and "linear" functions with any number of periods 
can be constructed. For example, if we write (4.17) in the form 

Ht + M& + MM + • • • + M^iS"-^) = Ht), 

where 0 defines GF{pn) and the Mi have coefficients in GF{p), then 
we may regard \j/(i) as an w-ply periodic function with respect to the 
smaller field. For the general case we put 

(4.19) ƒ(/) = J2 ( - lYA^/FiX 

in place of (4.14) we now have 

(4.20) f(xt) = xf{t) + £ (- ÎWV), 

which is characteristic. Using (4.20) we get a recursion for Ai, 

pn 

ZÏ Fr\ 

It is easily verified that (4.19) converges for all t defined by (4.17). 
The multiplication formula (4.15) now becomes 

mk f-(M) 

f(Mt) = £ ( - i ) < ^ . ƒ*>»*•(*), 
i=0 t i 

thus defining a set of linear polynomials fi(u). 
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5. Power sums.11 Going back to (4.2) it is not difficult to show 
that it implies 

(s.i) E — — = ( - i ) - — 1 

deg M=m t + M Lm 1pm(t) + Fm 

In this identity put / = 0 and we get 

(5.2) £ (1/10 = ( - Vm/Lm, 
deg M = m 

so that by the remark at the beginning of §4, the sum of the recipro­
cals of the polynomials of degree m is, except for sign, the reciprocal 
of the L. C. M. If we expand (5.1) in descending powers of / it is 
easily seen that 

(5.3) E M ^ - 1 = ( - l)mFm/Lm 
deg M—m 

while 
(5.4) X) Mk = 0 for k < pnm - 1. 

deg M=m 

(5.2) and (5.3) are special cases of12 

^ Fk 

(5.5) 2 M^-1 = ( - 1)- —, k^m, 
deg M=m LJFf™m 

and 

(5.6) Z M^"* = ^ ± ^ i - . 
deg i l f=w X y / - _ i ^ T O 

We outline a new proof of these formulas. 
Consider the sum 

(5.7) £ M(t)/M(x). 
deg M—m 

Since (5.7) is a polynomial in t of degree w, it may be determined by 
assigning ra + 1 values to /. We take 

t = xpn\ i = 0, 1, • • • , m. 

Using the Lagrange interpolation formula together with (5.3) and 
(5.4) leads to the identity 

(5.8) J^M(t)/M(x) = ( ( - l)m/Lm)(t - x)(t - xpn) • • • (* - x^m~l)). 
M 

11 Compare Duke Mathematical Journal, vol. 5 (1939), pp. 941-947. 
12 More general formulas are proved by H. L. Lee in a Duke University thesis. 
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In (5.8) take t = xpnk and we get (5.5) ; on the other hand interchange 
x and /, put t~xpnk, and the result is (5.6). 

We next construct a polynomial13 Gm(t) which is useful in evaluat­
ing more general power sums. Put 

m = a0 + axp
n + a2p

2n + • • • , 0 ^ a{ < pn; 

then define 

(5.9) Gm(t) = tïXMÏmlXt) • • • , GoW = 1. 
so that Gm(t) is of degree m in t, and the coefficients are integral in x. 
We also define 

(5.10) g» = F>ï- •• , go= 1. 

We shall not now go into the connection between Gm(t) and power 
sums but instead quote an application of a different sort. A polyno­
mial ƒ(t) may be called integral-valued if ƒ04) is integral for all in­
tegral A. Then we have the theorem :—the polynomial 

is integral-valued if and only if the coefficients Ai are integral, that is, 
polynomials in x. 

6. Bernoulli numbers.14 As analogues of the Bernoulli numbers we 
define a set of rational functions Bm by means of 

(6.1) 7 7 - = Z — ^ . 
Y\t) m=0 gm 

where \p(t) is defined by (4.11) and gm is given by (5.10). Note that Bm 

is defined only for m a multiple of pn — 1. Then in the first place we 
have the formula 

(6.2) çJ__£ïj. p»-\\m, 
A A gm 

the summation extending over all primary polynomials, and £ as in 
(4.13). Thus (6.2) is the analogue of a familiar formula; in particular 
it shows that Bm^O. Unfortunately no formula connecting Bm with 

13 See Duke Mathematical Journal, vol. 6 (1940), pp. 486-504. 
14 Compare Duke Mathematical Journal, vol. 3 (1937), pp. 503-517; vol. 7 (1940), 

pp. 62-67. 
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finite power sums is available and therefore the usual methods for de­
riving arithmetic properties of the ordinary Bernoulli numbers pa-
parently cannot be applied. Instead we make use of certain ideas due 
to Hurwitz.15 

We call a series of the form 

00 

(6.3) H(t) = Y,Amt™/gm, 
ra=0 

where the Am are integral, a Hurwitz series, briefly an ü-series. It 
follows that the sum and product of two u-series are again if-series; 
if ^40 == 1 then the reciprocal is an ü-series. If ^40 = 0 we call (6.3) an 
Hi-series. For this case we have the result that H\/gk is an iüT-series. 
This result applied to 

(6.4) ^ « - E ^ - V V * . 
m 

shows that A$ is a multiple of Fk/Lk. 
Now returning to the definition of Bm we have 

m m to u 
by (4.15) and therefore using (6.4) we get the formula 

(6.5) Bm = z2 — A m . 

From this result it follows that the denominator of Bm contains only 
simple factors. To improve this we require the following lemma: Let P 
be irreducible of degree k. Then 

t oo fpnki \ pn^—l 

(6.6) rnk~m - \ Z ( - l ) * - ^ - 4 (mod P). 

It is now easy to evaluate A$ (mod P ) . Substituting in (6.5) we 
get the following result. 

THEOREM (pn?*2). Let 

m = XI tip** 0 <j a{ < p. 
i 

Then if 

16 Mathematische Annalen, vol. 51 (1899), pp. 196-226 (== Mathematische Werke 
I I , Basel, 1933, pp. 342-373). 
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(6.7) X) ai = nk(P - 1)» #"* - 11 w, 

is inconsistent, Bm is integral', while if (6.7) w consistent, k is uniquely 
determined and 

(6.8) £ m = G m - e £ —, 
deg P=fc -t 

where Gm is integral, the summation is over irreducible polynomials P 
of degree k, and 

( _ Dnk+dk 

IL(«<O ' 
d = 2^t iaink+j. 

The case pn — 2 is covered by a supplementary theorem which we 
shall omit. 

We remark that if the function f(t) has an inverse of the form 
^2(Di/Li)tpn%, where the Di are integral, then for the coefficients of 
t/f(t) there is a decomposition into partial fractions similar to (6.8). 
This result evidently generalizes the above theorem on Bm. 
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