
ON THE THEORY OF THE TETRAHEDRON 

N. A. COURT 

I. DEFINITION. We associate with the general tetrahedron (T) 
— ABCD a sphere (Q) whose center is the Monge point M of (T) and 
the square of whose radius is 

(a) q2 = (MO2 - R2)/3, 

where O and R are the center and the radius of the circumsphere (0) 
of (T). 

In what follows, a number of propositions regarding the sphere 
(<2) will be established and it will be shown that from the properties 
of (Q) may be derived, as special cases, properties of the polar sphere 
(H) of the orthocentric tetrahedron (Th). 

For want of a better name we shall refer to (Q) as the "quasi-polar" 
sphere of the general tetrahedron (T). 

The expression M02 — R2 is the power of the Monge point M of (T) 
for the sphere (O). 

THEOREM 1. The square of the radius of the quasi-polar sphere of the 
general tetrahedron is equal to one-third of the power of the Monge point 
of the tetrahedron f or its circumsphere. 

The sphere (Q) is real, a point sphere, or imaginary according as 
MO is greater than, equal to, or smaller than R. Moreover, we have 
MO<2R, for the mid-point of MO is the centroid G of (T), and G 
necessarily lies within the sphere (0). 

COROLLARY. In an orthocentric tetrahedron (Th) the Monge point 
coincides with the orthocenter H, and the above properties of (Q) are valid 
for the polar sphere (H) of (Th).1 

The Monge point M of (T) is a center of similitude of the circum* 
sphere (0) and the twelve point sphere (L) of (T)2 hence M is the 
center of a sphere of antisimilitude of (0) and (L), that is, a sphere 
with respect to which the spheres (O) and (L) are inverse of one an­
other. 

Presented to the Society, December 31, 1941; received by the editors November 
22, 1941. 

1 Nathan Altshiller-Court, Modern Pure Solid Geometry, New York, 1935, p. 265, 
§813. This book will be referred to as MPSG. 

2 MPSG, p. 251, §764. 
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The line of centers LO of the spheres (L), (0) meets (0) in the 
points whose distances from M are MO — R and MO+R. Again, the 
line LO meets (L) in two points whose distances from M are ML — R/3 
and ML+R/3, for the radius of (L) is equal to R/3. Now the points 
MO+R, ML —R/3 correspond to each other in the inversion con­
sidered (and so do the points MO — R, ML + R/3), hence if x2 is the 
constant of inversion, we have 

x2 = (MO + R)(ML - R/3) = (MO + R)(3ML - R)/3 

= (MO2 - R2)/3 = q2. 

But the constant of inversion is the square of the radius of the sphere 
of inversion, and the sphere of inversion is coaxial with the two 
inverse spheres. 

THEOREM 2. The quasi-polar sphere of the general tetrahedron is co­
axial with the circumsphere and the general twelve point sphere of the 
tetrahedron. 

COROLLARY. TO the square (L) of (T) corresponds in the ortho-
centric tetrahedron (T\) the second twelve point sphere, and from the 
above property of (Q) we obtain the known property of the polar sphere 

THEOREM 3. The sum of the powers of the vertices of a general tetra­
hedron with respect to the quasi-polar sphere of that tetrahedron is equal 
to one-third of the sum of the squares of the edges of the tetrahedron. 

The power Dq of the vertex D of (7") for the sphere (Q) is 

Dq = MB2 - q2 = MD2 - (MO2 - R2)/3, 

and from the triangle DMO we have 

DM2 + DO2 = 2DG2 + M02/2 = WG2 + 20G2, 

hence 

Dq = 2DG2 + 2(OG2 - R2)/3. 

Adding to Dq the analogous formulas relative to the vertices 
A, B, C of (T) we obtain 

Aq + Bq + Cq + Dq = 2(AG2 + BG2 + CG2 + DG2) + 8(OG2 - R2)/3. 

Now if we denote by k2 the sum of the squares of the edges of (T), 
we have 

s MPSG, p. 264, §805. 
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AG2 + EG2 + CG2 + DG2 = &2/4,4 

(b) OG2 - R2 = - &2/16,6 

hence 

Aq + Bq + Cq + Dq = k2/2 - k2/6 = k2/3. 

COROLLARY. In an orthocentric tetrahedron the sum of the squares of a 
pair of opposite edges is constant, hence the sum of the powers of the 
vertices of the tetrahedron for the polar sphere is equal to the sum of the 
squares of a pair of opposite edges* 

THEOREM 4. The sum of the squares of the distances of the Monge 
point of a tetrahedron from the mid-points of the edges is equal to three 
times the sum of the squares of the radii of the circumsphere and the 
quasi-polar sphere of the tetrahedron. 

Let £ , F be the mid-points of the edges DA, BC of (T). The mid­
point of the bimedian EF — ma of (T) is the centroid G and therefore 
we have, from the triangle MEF, 

ME2 + MF2 = 2MG2 + EF2/2 = 20d + ml/2. 

We have two analogous formulas relative to the other two pairs of 
opposite edges of (T). Adding the three relations we have 

£ ME2 = 60G2 + (ml + ml + mc)/2. 

Now the expression in the parenthesis is equal to7 k2/4, hence, making 
use of the formula (b), we have 

X) ME2 = 6(R2 - &2/16) + k2/S = 3R2 + 3(R2 - k2/\2). 

But, eliminating OG between the formulas (a) and (b) we have 

(c) R2 - k2/\2 = q2, 

hence 

2 ME2 = 3(R2 + q2). 

COROLLARY. The proposition is valid for the orthocentric tetrahedron.8 

THEOREM 5. The sum of the powers of the Monge point of a tetra-

4 National Mathematics Magazine, vol. 15 (1941), p. 273, §3. 
0 V. Thebault, Nouvelles Annales de Mathématiques, (4), vol. 19 (1919), p. 425. 
6 Mathesis, vol. 42 (1928), p. 338, §2. 
7 MPSG, p. 56, §186. 
8 MPSG, p. 275, Example 4. 
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hedron with respect to the six spheres having for diameters the edges of 
the tetrahedron is equal to six times the square of the radius of the quasi-
polar sphere of the tetrahedron. 

The power of the Monge point M for the sphere (BC) having for 
diameter the edge BC = a of (T) is equal to MF2 — a2/^. We have five 
analogous expressions relative to the other five edges of (T). Adding 
the six expressions we have 

£ MF2 - &2/4, 

or, using the value oî^MF2 from the preceding article, 

6(R2 - &2/16) + k2/S - &2/4 = 6q\ 

In an orthocentric tetrahedron the spheres having for diameters the 
edges of the tetrahedron are orthogonal to the polar sphere. 

COROLLARY. The power of the orthocenterfor the six spheres is equal 
to the square of the radius of the polar sphere. 

The powers of the Monge point of (T) for the two spheres having 
for diameters a pair of opposite edges of (T) are equal.9 

THEOREM 6. The sum of the powers of the Monge point of a tetra­
hedron with respect to three spheres having f or diameters three concurrent 
(or coplanar) edges of the tetrahedron is equal to three times the square 
of the radius of the quasi-polar sphere. 

The centroid G of (T) bisects the segment AA ' joining A to the 
corresponding vertex A' of the tetrahedron (T') twin to (T), hence 
A MA 'O is a parallelogram. 

Let Ai be the diametric opposite of A on the circumsphere (0) 
of (T). The quadrilateral MArA\0 is a parallelogram, for OA\ and 
MA' are equal and parallel. Hence the diagonal MA\ bisects the 
diagonal OA', and therefore meets the median A'G of the triangle 
AfOM in the centroid Ga of that triangle. Thus 

GGa = A'Ga/2 = AG/3, 

and Ga is therefore the centroid of the face BCD of (T). Moreover 
MGa = MAi/3. 

Let A2 be the second point of intersection, besides A, of the line 
AM with the sphere (0). The line AiA2 is perpendicular to the line 
AMA2, hence if Fis the foot of the perpendicular from Ga upon AMA2 

we have 
9 G. Gallucci, Nouvelles Annales de Mathématiques, (3), vol. 16 (1897), p. 17, §5. 
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MF:MA2 = MGa'.MÂ! = 1:3, 

and therefore 

MA-MA2 = 3MA-MF. 

But MA • MA2 is the power of M for the sphere (0), hence by Theo­
rem 1, MA • M F is equal to the square of the radius of the quasi-polar 
sphere (Ç), that is, the points A, F are inverse with respect to (Q). 

The median AGa of (T) subtends a right angle at F, hence the 
sphere (AGa) having AGa for diameter is orthogonal to (Q), simi­
larly for the three analogous spheres (5GT>), (CGC), (DGd). Thus this 
theorem follows : 

THEOREM 7. The quasi-polar sphere of a tetrahedron is orthogonal to 
the four spheres having for diameters the four medians of the tetrahedron.10 

Since the points A, F are inverse for (Q) (Theorem 7), the polar 
plane a of A for (Q) is perpendicular to A M at F\ hence the line FGa 

is the trace of a in the plane A MGO. 

THEOREM 8. The polar reciprocal tetrahedron of a given tetrahedron 
(T) with respect to the quasi-polar sphere of (T) is circumscribed about 
the medial tetrahedron of (T). 

THEOREM 9. The faces of the polar reciprocal tetrahedron of a given 
tetrahedron (T) with respect to the quasi-polar sphere of (T) cut the 
spheres having for diameters the corresponding medians of (T) along 
four circles lying on the same sphere, namely, the twelve point sphere 
of(T). 

The point Ga lies on the twelve point sphere (L) of (T), and the 
diametric opposite of Ga on (L) lies on the line AM',11 hence the point 
F also belongs to the sphere (L). Thus the plane a (Theorem 8) cuts 
the two spheres (AGa) and (L) along the same circle, and FGa is a 
diameter of that circle. 

THEOREM 10. The faces of the polar reciprocal tetrahedron of the 
medial tetrahedron of a given tetrahedron (T) with respect to the quasi-
polar sphere of (T) cuts the spheres having f or diameters the respective 
medians of (T) along f our circles lying on the same sphere, namely the 
circumsphere of (T). 

The polar plane of Ga with respect to the quasi-polar sphere (Q) 
passes through A and is perpendicular to MGa, hence the trace K 

10 American Mathematical Monthly, vol. 39 (1932), pp. 196, 197, §§11, 13. 
11 MPSG, p. 251. 
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of this plane on MGa lies on the sphere (AGa) having for diameter 
the median AGa of (T). 

On the other hand, the line MGa passes through the diametric 
opposite A\ of A on the circumsphere (0) of (T), hence K lies on (0). 
Thus the line AK is a common diameter of the two circles along which 
the polar plane considered cuts the two spheres (AGa) and (0). 

II . DEFINITIONS. We associate with the general tetrahedron (T) the 
sphere having for center the centroid G of (T) and for the square of its 
diameter one-third of the sum of the squares of the bimedians of (T). 
The sphere will be denoted by (G) and referred to as the G-sphere of (T). 
The sphere (G) is concentric with the three spheres having for diameters 
the bimedians of (T). 

In an orthocentric tetrahedron the bimedians are equal, so that 
the three spheres having these bimedians for diameters coincide, and 
the G-sphere coincides with them, in the first twelve point sphere 
of the orthocentric tetrahedron, the three bimedians being diameters 
of that sphere. 

THEOREM 1. The quasi-polar sphere and the (G)-sphere of the general 
tetrahedron are orthogonal. 

The square of the radius, g2, of the sphere (G) is equal to7 (§1, 
Theorem 4) 

(ma + mh + mc)/3:4: = k /48, 

hence 

g2 + g2 = (R2 __ £2/12) + £2/4 8 = R2 _ £2/1 6 = QQ2 = MQ2} 

that is, the square of the line of centers of the spheres (<2), (G) is 
equal to the sum of the squares of their radii. 

COROLLARY. The polar sphere and the first twelve point sphere of the 
orthocentric tetrahedron are orthogonal.12 

THEOREM 2. The sphere (G) belongs to the coaxial pencil formed by 
the circumsphere, the twelve point sphere, and the quasi-polar sphere 
of the tetrahedron. 

The centroid G is the second center of similitude, besides the point 
M, of the circumsphere (0) and the twelve point sphere (L) of (T). 
Now the quasi-polar sphere (Q) being a sphere of antisimilitude of 

« MPSG, p. 262, §799. 
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(O) and (L) (§1, Theorem 2), the sphere (G) having G for center and 
orthogonal to (Q) (§11, Theorem 1) is the second sphere of anti-
similitude of (0) and (L) ; hence (G) is coaxial with these spheres. 

THEOREM 3. The four spheres having for centers the vertices of a 
tetrahedron and orthogonal to the quasi-polar sphere cut the spheres 
having for diameters the respective medians of the tetrahedron along 
four circles belonging to the same sphere, namely, the (G)-sphere of the 
tetrahedron. 

The sphere (A) having A for center and orthogonal to the sphere 
(<2) is coaxial with the spheres (G) and {AGa), for the centers of these 
three spheres are collinear and all three are orthogonal to (Q). Simi­
larly for the vertices B, C, D of (T). 

UNIVERSITY OF OKLAHOMA 

EUCLIDEAN CONCOMITANTS OF THE TERNARY CUBIC 

T. L. WADE 

1. Introduction; construction of concomitants. In this paper we use 
the results of Cramlet [ l ] and the writer [2] to study the euclidean 
concomitants of the ternary cubic curve 

TahcX
aXbXc = 0, 

where a, b, c — \, 2, 3 and Tabc is symmetric. With tensor algebra as 
the medium of investigation all types of concomitants are readily con­
structed, and their geometric interpretations are also readily made in 
most cases. As is conventional in classical invariant theory, the word 
concomitant will be used as meaning rational integral concomitant 
unless stated to the contrary. 

As a consequence of Theorem 3 in [2], we have the following theo­
rem. 

THEOREM I. Every euclidean concomitant of the ground form 
TabcXaXbXc (a, b, c = l, 2, 3) is expressible by composition as a tensor 
of order zero with the use of the coefficient tensor Tabc, the variable coordi­
nate tensors Xa and Ua, and the numerical tensors eabc, La, and Eab. 

Presented to the Society, September 5, 1941 ; received by the editors of the Trans-
sctions of this Society, September 25, 1941 ; accepted by them and later transferred to 
this Bulletin. 


