
ROOTS OF CERTAIN CLASSES OF POLYNOMIALS 

LOUIS WEISNER 

I t is well known1 tha t if the roots of the polynomials <j>(z) and F(z) 
are real, so are the roots of the polynomial <f>{D)F{z), where D = d/dz. 
This result has been applied to certain types of entire functions and 
trigonometric integrals.2 The following example illustrates the method 
employed. If 

(i) zoo = è c** 
fc=0 

is a polynomial whose roots Ai, • • • , A» lie on the unit circle, then the 
roots of the polynomials 

n 

FP(z) = e u [(1 + *IPY - Xt(l - z/p)>], P = 1, 2, • • • , 

lie on the axis of pure imaginaries. Therefore, if the roots of the poly
nomial <j>(z) lie on the axis of pure imaginaries, so do the roots of the 
polynomials3 </>(D)Fp(z), p = l, 2, • • • . Now the sequence of polyno
mials {Fp(z)} converges uniformly in every finite region to the func
tion 

n 

F(z) = e~nzf(e*z) = £ c*e(2*-w)', 
fc=0 

and the sequence {</>(D)Fp(z)} converges likewise to 

n 

<t>(D)F(z) = X) ck<f,(2k - n)e«*-^. 

The roots of <j>(D)F(z) therefore lie on the axis of pure imaginaries. 
Removing the innocuous factor e~~nz, and replacing e2z by z, the fol
lowing theorem results: If the roots of f(z) lie on the unit circle, and the 
roots of 4>(z) lie on the axis of pure imaginaries, then the roots of the 
polynomial 

Presented to the Society, September 5, 1941 ; received by the editors June 6, 1941. 
1 Ch. Hermite, Nouvelles Annales de Mathématiques, vol. 5 (1866), p . 479; Pólya 

and Szegö, Aufgaben und Lehrsatze aus der Analysis II , p. 47, Problem 62. 
2 See G. Pólya, Über trigonometrische Integrale mit nur reellen Nullstellen, Journal 

für die reine und angewandte Mathematik, vol. 158 (1927), pp. 6-18. 
3 Replacing z by iz it follows from the above theorem of Hermite that if the roots 

of <f>(z) and F(z) lie on the axis of pure imaginaries, so do the roots of <f>(D)F(z). 
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(2) g(z) = E c*0(2* - n)zk 

lie on the unit circle. 
This theorem provides us with a large class of polynomials whose 

coefficients are explicitly given and whose roots lie on the unit circle. 
As the theorem itself concerns polynomials, while the proof is trans
cendental, an elementary proof is desirable. An elementary proof, 
with extensions, follows. 

From the polynomials ƒ(s) and <f> (z), where ƒ (z) has the explicit form 
(1), construct the polynomial g(z) defined by (2). Setting 

lK«) = 0(2* - »), 

we have 

n 

g(z) = X) c*fr(k)zh. 
fc=0 

If aij • • • , am are the roots of \[/(z), so that 

m 

\p(z) = aJl 0 - a*), a 7* 0, 

then 

m 

(3) g(z) = a u («Ö - a,) •/(s) = *(zD)f{z). 

Now suppose that the roots of #(3) lie on the axis of pure imagi-
naries and the roots of ƒ(z) in the ring r ^ | s | ^ r 2 , where 0^riSr2. 
From the relation between 4>(z) and \p(z) it is evident that the roots 
of yp(z) lie on the line $lz = n/2. Let a be a root of ^(2) and f a root of 
the equation 

(4) *ƒ'(*) - <*ƒ(*) = 0. 

If f is also a root of ƒ(2), f is a multiple root of ƒ (2) and hence lies in 
the ring fiS \ z\ ^r2. In the contrary case the centroid of ƒ (z) relative 
to f is different from f. This centroid is4 ft =f-«ƒ($")/ƒ'(£) = (1 -n/a)Ç, 
by (4). From 9?ce = w/2, we infer that 11 — w/a | = 1 ; therefore | f 11 = | f | . 
If f is outside the ring Y\ ^ | z\ Sri, the circle with center at the origin 
which passes through f and fi fails to separate the roots of ƒ(2), in 
violation of a theorem of Laguerre.5 Therefore all the roots of (4) 

4 E. Laguerre, Oeuvres, vol. 1, p. 56. 
5 Laguerre, loc. cit., p. 57, p. 134; Pólya and Szegö, loc. cit., p. 57, Problem 106. 
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lie in the ring r i ^ \z\ ^r2. Applying this result repeatedly it follows 
from (3) that the roots of g(z) lie in the ring. 

THEOREM 1. If the roots of <j>{z) lie on the axis of pure imaginaries, 
and the roots off{z) in the ring rx^\z\ ^ r 2 , then the roots of g{z) lie in 
this ring. 

COROLLARY 1. If the roots of <j>(z) lie on the axis of pure imaginaries ̂  
and the roots of f{z) on the circle \z\ =r, then the roots of g(z) lie on this 
circle. 

COROLLARY 2. If the roots of <})(z) lie on the axis of pure imaginaries, 
the roots of the polynomial 

n 

X<K2& - n)zk 

lie on the unit circle. 

To prove the first corollary, take ri = r2 = r. To prove the second, 
take /(z) = l+z + • • • +zn. 

We suppose now that the roots of f(z) lie in the circular region 
\z\ ^r, and that the roots of 4>{z) lie in the half-plane SRz^O. We 
reexamine (4), retaining our previous notation. If a = 0, the roots of 
(4) lie in the region |JS| Sr by the Gauss-Lucas theorem; hence we 
need only consider the case a ^ O . We may also suppose that f is not 
a root of f(z). 

We now have WaSn/2', hence | l - w / a | è l , and | f i | ^ | f | . If 
|fI >r, then | f i | > r , and a circle may be drawn through f and fi 
which fails to separate the roots of ƒ(z). As this result contradicts 
Laguerre's theorem, the region | s | ^r includes all the roots of (4) 
and consequently all the roots of g{z). 

THEOREM 2. If the roots of </>(z) lie in the half-plane 9 te^0, and the 
roots of f(z) lie in the circular region \z\ ^r, then the roots of g{z) lie 
in this circular region. 

Theorem 2 may be extended to the case in which <j>(z) is the limit 
of a sequence of polynomials whose roots lie in the half-plane $tz ^ 0 
and which converges uniformly in every finite region.6 Likewise 
Theorem 1 and its corollaries are valid if <j>{z) is the limit of a se-

6 Entire functions which are limits of such sequences of polynomials are charac
terized by Eduard Benz, Über lineare, verschiebungstreue Funktionaloperationen una 
die Nullstellen von ganzen Funktionen, Commentarii Mathematici Helvetici, vol. 7 
(1935), p. 246. 
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quence of polynomials whose roots lie on the axis of pure imaginaries 
and which converges uniformly in every finite region. 

H U N T E R COLLEGE 

GENERALIZED LAPLACE INTEGRALS 

R. P. BOAS, JR. 

We consider the linear space §(c) whose elements are functions f(z) 
[z = x+iy] which are analytic for x>c and satisfy 

(i) ƒ 00 

I ƒ 0 + iy) \2dy ^ M, x > c, 
- 0 0 

where the finite number M depends on the function in question. I t 
is well known that an element f(z) of §(c) has boundary values 
f(c+iy) almost everywhere on x=c, and that §(c) is a Hilbert space 
if the norm of ƒ (z) is defined by 

ll/(s)||2= f"\f(c+iy)\2dy. 

Furthermore, it is known [5, p. 8] that if/(s)G:§(V), then ƒ(z) is 
representable as a Laplace integral for x>c, in the sense that there 
is a unique function1 <j>(t) with e~ct(j){t) £L 2 (0 , oo) such that 

(2) lim 
!T->oo J o 

e~-zt<t>{t)dt 0; 

we shall express (2) by writing 

ƒI 00 

e-zt<l>(t)dt, x > c. 

o 
It is easily verified that the integral in (3) converges in the ordinary 
sense for x>c. A Laplace integral may be regarded as a generalized 
power series; the object of this note is to generalize the integral repre
sentation (3) by replacing e~zt by a kernel g(z, i) which is in some sense 
"nearly" e~zt, just as power series ^anz

n have been generalized2 by 
replacing the functions zn by functions gn(z). 

Presented to the Society, September 5,1941; received by the editors May 24,1941. 
1 Unique, that is, up to sets of measure zero. 
2 For a bibliography of this problem, see [ l ] . 


