ROOTS OF CERTAIN CLASSES OF POLYNOMIALS
LOUIS WEISNER

It is well known! that if the roots of the polynomials ¢(z) and F(z)
are real, so are the roots of the polynomial ¢(D)F(z), where D=d/dz.
This result has been applied to certain types of entire functions and
trigonometric integrals.? The following example illustrates the method
employed. If

1) fa) = X2 aist
k=0
is a polynomial whose roots Ay, - - -, N, lie on the unit circle, then the

roots of the polynomials

Fy(s) = cI_I [(1+2/p)7 — Mt — 5/p)?],  p=1,2--,

lie on the axis of pure imaginaries. Therefore, if the roots of the poly-
nomial ¢(2) lie on the axis of pure imaginaries, so do the roots of the
polynomials® ¢(D) F,(2), p=1, 2, - - - . Now the sequence of polyno-
mials {Fp(z) } converges uniformly in every finite region to the func-
tion

F(Z) —_ e—nzf(e‘lz) —_ Z 6k6(2k—")z,
k=0

and the sequence {d)(D)F,,(z)} converges likewise to

n

d(D)F(z) = 2 cip(2k — m)e2h—m:z,

k=0

The roots of ¢(D)F(2) therefore lie on the axis of pure imaginaries.
Removing the innocuous factor e~"#, and replacing ¢** by 2, the fol-
lowing theorem results: If the roots of f(2) lie on the unit circle, and the
roots of ¢(2) lie on the axis of pure imaginaries, then the roots of the
polynomial
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1 Ch. Hermite, Nouvelles Annales de Mathématiques, vol. 5 (1866), p. 479; Pélya
and Szego, Aufgaben und Lehrsitze aus der Analysis 11, p. 47, Problem 62.

2 See G. Pélya, Uber trigonometrische Integrale mit nur reellen Nullstellen, Journal
fiir die reine und angewandte Mathematik, vol. 158 (1927), pp. 6-18.

3 Replacing z by 7z it follows from the above theorem of Hermite that if the roots
of ¢(z) and F(2) lie on the axis of pure imaginaries, so do the roots of ¢(D)F(3).
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n

(2) 8(s) = 2 cxp(2k — m)a*
k=0
lie on the unit circle.

This theorem provides us with a large class of polynomials whose
coefficients are explicitly given and whose roots lie on the unit circle.
As the theorem itself concerns polynomials, while the proof is trans-
cendental, an elementary proof is desirable. An elementary proof,
with extensions, follows.

From the polynomials f(z) and ¢(z), where f(z) has the explicit form
(1), construct the polynomial g(z) defined by (2). Setting

¥(2) = ¢(2z — n),

we have
) = 3 cok(han
If as, - - -, cen are the roots of (z), so that
@) = all G — a), a0,
then -
) 6() = aI1 6D = a)-f(2) = ¥GDIfG).

Now suppose that the roots of ¢(z) lie on the axis of pure imagi-
naries and the roots of f(2) in the ring », < Izl =rs, where 07, =7,.
From the relation between ¢(2) and y(2) it is evident that the roots
of Y(z) lie on the line Rz=n/2. Let @ be a root of Y(z) and { a root of
the equation

4) #f'(z) — af(z) = 0.

If ¢ is also a root of f'(2), { is a multiple root of f(z) and hence lies in
the ring 7, = |z[ =7,. In the contrary case the centroid of f(z) relative
to ¢ is different from ¢. This centroid is* {1 ={—nf(O) /f' () =1 —n/a)¢,
by (4). From Ra=n/2, weinfer that | 1 —n/al =1;therefore |{:| =|¢].
If ¢ is outside the ring 71 < | 2| <7, the circle with center at the origin
which passes through ¢ and {; fails to separate the roots of f(z), in
violation of a theorem of Laguerre.® Therefore all the roots of (4)

4 E. Laguerre, Oeuvres, vol. 1, p. 56.
5 Laguerre, loc. cit., p. 57, p. 134; Pélya and Szegs, loc. cit., p. 57, Problem 106.



1942] ROOTS OF POLYNOMIALS 285

lie in the ring 71 = |z| =r,. Applying this result repeatedly it follows
from (3) that the roots of g(z) lie in the ring.

THEOREM 1. If the roots of ¢(z) lie on the axis of pure imaginaries,
and the roots of f(2) in the ring r1 =< [zl =<v,, then the roots of g(2) lie in
this ring.

COROLLARY 1. If the roots of ¢(z) lie on the axis of pure imaginaries,
and the roots of f(2) on the circle Iz] =v, then the roots of g(z) lie on this
circle.

COROLLARY 2. If the roots of ¢(2) lie on the axis of pure imaginaries,
the roots of the polynomial

2 o2k — n)z*
k=0

lie on the unit circle.

To prove the first corollary, take »;=7y=7r. To prove the second,
take f(z) =142+ - - - +2~.

We suppose now that the roots of f(z) lie in the circular region
|z| =vr, and that the roots of ¢(2) lie in the half-plane Rz=<0. We
reéxamine (4), retaining our previous notation. If =0, the roots of
(4) lie in the region |z| =r by the Gauss-Lucas theorem; hence we
need only consider the case a#0. We may also suppose that ¢ is not
a root of f'(z).

We now have Ra=<n/2; hence |1—n/a| 21, and |&| 2|5 If
[;[ >, then |§‘1| >7, and a circle may be drawn through { and ¢
which fails to separate the roots of f(z). As this result contradicts
Laguerre’s theorem, the region ]z] =7 includes all the roots of (4)
and consequently all the roots of g(z).

THEOREM 2. If the roots of ¢(2) lie in the half-plane Rz =<0, and the
roots of f(2) lie in the circular region Izl <v, then the roots of g(z) lie
in this circular region.

Theorem 2 may be extended to the case in which ¢(z) is the limit
of a sequence of polynomials whose roots lie in the half-plane Rz2=<0
and which converges uniformly in every finite region.® Likewise
Theorem 1 and its corollaries are valid if ¢(2) is the limit of a se-

¢ Entire functions which are limits of such sequences of polynomials are charac-
terized by Eduard Benz, Uber lineare, verschiebungstreue Funktionaloperationen und
die Nullstellen von ganzen Funktionen, Commentarii Mathematici Helvetici, vol. 7
(1935), p. 246.
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quence of polynomials whose roots lie on the axis of pure imaginaries
and which converges uniformly in every finite region.

HuNTER COLLEGE

GENERALIZED LAPLACE INTEGRALS
R. P. BOAS, JR.

We consider the linear space $(c) whose elements are functions f(z)
[z=x+414y] which are analytic for x >¢ and satisfy

® [ 1t i iy = m, >
where the finite number M depends on the function in question. It
is well known that an element f(z) of §(c) has boundary values
flc+1y) almost everywhere on x =c¢, and that §(c) is a Hilbert space
if the norm of f(2) is defined by

@l = [ | e+ i |aa.
Furthermore, it is known [5, p. 8] that if f(2) E9(c), then f(z) is
representable as a Laplace integral for x >¢, in the sense that there
is a unique function® ¢(f) with e~¢(t) EL2(0, «) such that

(2) lim

T—w

f@) — foTe‘%(t)dtH =0;

we shall express (2) by writing
3) f(2) =f e *tp(t)ds, x> c.
0

It is easily verified that the integral in (3) converges in the ordinary
sense for x >c¢. A Laplace integral may be regarded as a generalized
power series; the object of this note is to generalize the integral repre-
sentation (3) by replacing e~** by a kernel g(z, ) which is in some sense
“nearly” e~2t, just as power series )_a,z" have been generalized? by
replacing the functions 2* by functions g,(2).
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1 Unique, that is, up to sets of measure zero.
2 For a bibliography of this problem, see [1].



