
ROOTS OF CERTAIN CLASSES OF POLYNOMIALS 

LOUIS WEISNER 

I t is well known1 tha t if the roots of the polynomials <j>(z) and F(z) 
are real, so are the roots of the polynomial <f>{D)F{z), where D = d/dz. 
This result has been applied to certain types of entire functions and 
trigonometric integrals.2 The following example illustrates the method 
employed. If 

(i) zoo = è c** 
fc=0 

is a polynomial whose roots Ai, • • • , A» lie on the unit circle, then the 
roots of the polynomials 

n 

FP(z) = e u [(1 + *IPY - Xt(l - z/p)>], P = 1, 2, • • • , 

lie on the axis of pure imaginaries. Therefore, if the roots of the poly­
nomial <j>(z) lie on the axis of pure imaginaries, so do the roots of the 
polynomials3 </>(D)Fp(z), p = l, 2, • • • . Now the sequence of polyno­
mials {Fp(z)} converges uniformly in every finite region to the func­
tion 

n 

F(z) = e~nzf(e*z) = £ c*e(2*-w)', 
fc=0 

and the sequence {</>(D)Fp(z)} converges likewise to 

n 

<t>(D)F(z) = X) ck<f,(2k - n)e«*-^. 

The roots of <j>(D)F(z) therefore lie on the axis of pure imaginaries. 
Removing the innocuous factor e~~nz, and replacing e2z by z, the fol­
lowing theorem results: If the roots of f(z) lie on the unit circle, and the 
roots of 4>(z) lie on the axis of pure imaginaries, then the roots of the 
polynomial 

Presented to the Society, September 5, 1941 ; received by the editors June 6, 1941. 
1 Ch. Hermite, Nouvelles Annales de Mathématiques, vol. 5 (1866), p . 479; Pólya 

and Szegö, Aufgaben und Lehrsatze aus der Analysis II , p. 47, Problem 62. 
2 See G. Pólya, Über trigonometrische Integrale mit nur reellen Nullstellen, Journal 

für die reine und angewandte Mathematik, vol. 158 (1927), pp. 6-18. 
3 Replacing z by iz it follows from the above theorem of Hermite that if the roots 

of <f>(z) and F(z) lie on the axis of pure imaginaries, so do the roots of <f>(D)F(z). 
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(2) g(z) = E c*0(2* - n)zk 

lie on the unit circle. 
This theorem provides us with a large class of polynomials whose 

coefficients are explicitly given and whose roots lie on the unit circle. 
As the theorem itself concerns polynomials, while the proof is trans­
cendental, an elementary proof is desirable. An elementary proof, 
with extensions, follows. 

From the polynomials ƒ(s) and <f> (z), where ƒ (z) has the explicit form 
(1), construct the polynomial g(z) defined by (2). Setting 

lK«) = 0(2* - »), 

we have 

n 

g(z) = X) c*fr(k)zh. 
fc=0 

If aij • • • , am are the roots of \[/(z), so that 

m 

\p(z) = aJl 0 - a*), a 7* 0, 

then 

m 

(3) g(z) = a u («Ö - a,) •/(s) = *(zD)f{z). 

Now suppose that the roots of #(3) lie on the axis of pure imagi-
naries and the roots of ƒ(z) in the ring r ^ | s | ^ r 2 , where 0^riSr2. 
From the relation between 4>(z) and \p(z) it is evident that the roots 
of yp(z) lie on the line $lz = n/2. Let a be a root of ^(2) and f a root of 
the equation 

(4) *ƒ'(*) - <*ƒ(*) = 0. 

If f is also a root of ƒ(2), f is a multiple root of ƒ (2) and hence lies in 
the ring fiS \ z\ ^r2. In the contrary case the centroid of ƒ (z) relative 
to f is different from f. This centroid is4 ft =f-«ƒ($")/ƒ'(£) = (1 -n/a)Ç, 
by (4). From 9?ce = w/2, we infer that 11 — w/a | = 1 ; therefore | f 11 = | f | . 
If f is outside the ring Y\ ^ | z\ Sri, the circle with center at the origin 
which passes through f and fi fails to separate the roots of ƒ(2), in 
violation of a theorem of Laguerre.5 Therefore all the roots of (4) 

4 E. Laguerre, Oeuvres, vol. 1, p. 56. 
5 Laguerre, loc. cit., p. 57, p. 134; Pólya and Szegö, loc. cit., p. 57, Problem 106. 
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lie in the ring r i ^ \z\ ^r2. Applying this result repeatedly it follows 
from (3) that the roots of g(z) lie in the ring. 

THEOREM 1. If the roots of <j>{z) lie on the axis of pure imaginaries, 
and the roots off{z) in the ring rx^\z\ ^ r 2 , then the roots of g{z) lie in 
this ring. 

COROLLARY 1. If the roots of <j>(z) lie on the axis of pure imaginaries ̂  
and the roots of f{z) on the circle \z\ =r, then the roots of g(z) lie on this 
circle. 

COROLLARY 2. If the roots of <})(z) lie on the axis of pure imaginaries, 
the roots of the polynomial 

n 

X<K2& - n)zk 

lie on the unit circle. 

To prove the first corollary, take ri = r2 = r. To prove the second, 
take /(z) = l+z + • • • +zn. 

We suppose now that the roots of f(z) lie in the circular region 
\z\ ^r, and that the roots of 4>{z) lie in the half-plane SRz^O. We 
reexamine (4), retaining our previous notation. If a = 0, the roots of 
(4) lie in the region |JS| Sr by the Gauss-Lucas theorem; hence we 
need only consider the case a ^ O . We may also suppose that f is not 
a root of f(z). 

We now have WaSn/2', hence | l - w / a | è l , and | f i | ^ | f | . If 
|fI >r, then | f i | > r , and a circle may be drawn through f and fi 
which fails to separate the roots of ƒ(z). As this result contradicts 
Laguerre's theorem, the region | s | ^r includes all the roots of (4) 
and consequently all the roots of g{z). 

THEOREM 2. If the roots of </>(z) lie in the half-plane 9 te^0, and the 
roots of f(z) lie in the circular region \z\ ^r, then the roots of g{z) lie 
in this circular region. 

Theorem 2 may be extended to the case in which <j>(z) is the limit 
of a sequence of polynomials whose roots lie in the half-plane $tz ^ 0 
and which converges uniformly in every finite region.6 Likewise 
Theorem 1 and its corollaries are valid if <j>{z) is the limit of a se-

6 Entire functions which are limits of such sequences of polynomials are charac­
terized by Eduard Benz, Über lineare, verschiebungstreue Funktionaloperationen una 
die Nullstellen von ganzen Funktionen, Commentarii Mathematici Helvetici, vol. 7 
(1935), p. 246. 
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quence of polynomials whose roots lie on the axis of pure imaginaries 
and which converges uniformly in every finite region. 

H U N T E R COLLEGE 

GENERALIZED LAPLACE INTEGRALS 

R. P. BOAS, JR. 

We consider the linear space §(c) whose elements are functions f(z) 
[z = x+iy] which are analytic for x>c and satisfy 

(i) ƒ 00 

I ƒ 0 + iy) \2dy ^ M, x > c, 
- 0 0 

where the finite number M depends on the function in question. I t 
is well known that an element f(z) of §(c) has boundary values 
f(c+iy) almost everywhere on x=c, and that §(c) is a Hilbert space 
if the norm of ƒ (z) is defined by 

ll/(s)||2= f"\f(c+iy)\2dy. 

Furthermore, it is known [5, p. 8] that if/(s)G:§(V), then ƒ(z) is 
representable as a Laplace integral for x>c, in the sense that there 
is a unique function1 <j>(t) with e~ct(j){t) £L 2 (0 , oo) such that 

(2) lim 
!T->oo J o 

e~-zt<t>{t)dt 0; 

we shall express (2) by writing 

ƒI 00 

e-zt<l>(t)dt, x > c. 

o 
It is easily verified that the integral in (3) converges in the ordinary 
sense for x>c. A Laplace integral may be regarded as a generalized 
power series; the object of this note is to generalize the integral repre­
sentation (3) by replacing e~zt by a kernel g(z, i) which is in some sense 
"nearly" e~zt, just as power series ^anz

n have been generalized2 by 
replacing the functions zn by functions gn(z). 

Presented to the Society, September 5,1941; received by the editors May 24,1941. 
1 Unique, that is, up to sets of measure zero. 
2 For a bibliography of this problem, see [ l ] . 


