
ON THE EXISTENCE OF ELECTRICAL NETWORKS 

C. E. CLARK 

This paper is concerned with the existence of electrical networks 
which satisfy certain preassigned conditions. These conditions have 
to do with the existence of circuits with preassigned resistances in 
common. 

Consider a finite set of points in euclidean 3-space and a set of 
straight line segments joining pairs of these points. Furthermore, sup­
pose that no two of the segments intersect at an interior point, but 
any number of segments may have a common end-point. Each of 
the segments is called a branch of the graph. With each branch of the 
graph let there be associated a non-negative real number called the 
resistance of the branch. The graph together with the resistances is 
an electrical network. A circuit of a network is a topological circle of 
the network together with an orientation of this circle. 

Let two circuits d and Cy have the branches fry, p — \, 2, • • • , in 
common. Let rv

Xj be the resistance of b\r Let r^^rfj if the orientations 
of d and Cj agree along by while f̂  = — rXj if the orientations are op­
posite. Then /»/=]C^S» >̂ = 1, 2, * - , is the intersection of d and Cj. 
We see that la is the sum of the resistances of the branches of d. 

Let d, i = l, 2, • • • , n, be distinct circuits of a network. Then the 
matrix | | i ^ j | , i, j = l, - - • , n, is the intersection matrix of the Ci. 
This matrix is symmetric and has non-negative diagonal elements. 
Any matrix with these two properties is an intersection matrix. An in­
tersection matrix M is realizable when there exists a network which has 
a set of circuits whose intersection matrix is M. 

THEOREM 1. Given an intersection matrix 

(1) |k*y||> i, j = 1, • • • , n\ 

if Iii^%2i\lij\ ,f¥"i,i — \, • • • , n, then (1) is realizable. 

PROOF. Choose In points on each of n oriented circles Si, i = 1, • • •, n. 
These points divide each Si into 2n branches. Denote the In branches 
of Si by ba, on, bi2, 0*2, • • • , bin, oin with the fr's separated by the Ö'S. 
To each 0 is assigned the resistance zero. We shall next identify fri­
and bji, i^j.1 In the resulting figure there will be a circle that is the 
natural topological image of 5». We shall say that this circle is Si. 

1 I.e., we bring the two end-points of bij into coincidence with the end- points of ba 
and replace these two branches by a single branch. To do this it may be necessary to 
replace any figure by its homeomorph. 
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The identification of ba and b^ can be performed in two ways. If 
lij>0, the identification is made so that Si and S3- agree in orientation 
along their common branch; if la<0, Si and S3-have opposite orienta­
tions along their common branch; and if 7»/ = 0, we choose either iden­
tification. To the common branch is assigned the resistance I a]. 

To bu, i = l, - - • , n, is assigned the resistance Iu—^j\lij\, jj^i. 
In the resulting network the St-, i = l, • • • , w, are circuits whose 

intersection matrix is (1). 

THEOREM 2. If matrix (1) is realizable, and if a matrix (la) is ob­
tained from (1) by increasing a diagonal term la to lu , then (la) is 
realizable. 

PROOF. Consider a realization of (1) and let d be the circuit whose 
total resistance is la. We break Ci at one of its vertices A and insert 
two branches bi and b between the two ends A\ and -4 2 of the broken 
circuit. Any other branch that had been connected at A may now be 
connected at either A\ or A^ To the branch bi is assigned the resist­
ance Iil —1«, while to b is assigned the resistance zero. The new net­
work gives a realization of ( la) . 

The above theorems show that if all except the diagonal elements 
of a symmetric matrix are given, then it is possible to assign the di­
agonal elements so that the resulting matrix is realizable. Also there 
are minimal sets of diagonal elements that can be assigned. But there 
is not a unique minimal set of diagonal elements as we now show by 
example. 

We wish to find the smallest a, b, and c so that 

(2) 

is realizable. We can take a = l . To do so we must have the second 
and third circuits S2 and S3 intersecting the first circuit Si along the 
same branch and both £2 and S3 agreeing in orientation with Si along 
this branch. Since I23 = — 1, we must have S2 and S3 intersecting along 
another branch. This branch can have resistance 2 with S2 and S3 op­
positely oriented here. This gives a realization of (2) with a = l, & = 3, 
and c = 3. 

Also we can see that if a<2, then one other of the diagonal terms 
must be greater than 2. Hence if a = b = c = 2 makes (2) realizable, 
then this set of diagonal elements is a minimal set (in the sense that 
one element can not be decreased without increasing another). But 

a 

1 

1 

1 

b 

- 1 

1 

- 1 

c 
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by Theorem 1 the values a = b = c = 2 make (2) realizable. Hence there 
is n o t a unique minimal set of values for a, b, and c. 

THEOREM 3. Given la, i^j, of (1) (but not the diagonal elements), 
let a be fixed; then we can take Iaa = max | Iaj\, j9ea, and find values for 
la, iy^a, so that (1) is realizable. 

The proof is similar to the proofs of the preceding theorems. 

PURDUE UNIVERSITY 

ON THE SPHERICAL SURFACE OF SMALLEST RADIUS 
ENCLOSING A BOUNDED SUBSET OF w-DIMEN-

SIONAL EUCLIDEAN SPACE1 

L. M. BLUMENTHAL AND G. E. WAHLIN 

1. Introduction. An (w —1)-dimensional spherical surface 5n_i,r is 
the "surface" of an ^-dimensional sphere of radius r in £w, the n-A\-
mensional euclidean space. A given spherical surface encloses M, a 
subset of En, provided M is contained in the sphere with this surface, 
while M is enclosable by a given 5n-i,r whenever M is a subset of a 
sphere whose surface is congruent with 5n_i,r. The purpose of this 
article is to show (1) if M is any bounded subset of En (containing more 
than a single point) there exists a unique Sn-i,r of smallest radius r en­
closing M and (2) if d is the diameter of M, then the radius of the unique 
smallest Sn-i,r enclosing M satisfies the relation r^ [n/2(n + l)]lf2-d. 

In a proof that abounds with algebraic difficulties, H. W. E. Jung 
established these results in his dissertation (1901) for the case of finite 
point sets and indicated their extension to infinite sets at the end of 
his long paper.2 Returning to the subject eight years later, Jung at­
tempted a geometric proof for the case of n points in a plane, but suc­
ceeded in obtaining in this later article only necessary conditions on 
the smallest circle enclosing a plane (finite) set, since his procedure 
yields the smallest circle only in case one is assured of the existence 
of such a circle.3 Though this fact can readily be supplied, the geo­
metric considerations used by Jung are not easily extended to finite 

1 Presented to the Society, February 22, 1941. 
2 H. W. E. Jung, Ueber die kleinste Kugel, die eine ràumliche Figur einschliesst, 

Journal fiir die reine und angewandte Mathematik, vol. 123 (1901), pp. 241-257. 
8 H. W. E. Jung, Ueber den kleinsten Kreis, der eine ebene Figur einschliesst, ibid., 

vol. 137 (1909), pp. 310-313. 


