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BY PLANES AND CYLINDERS 

J. C. JAEGER 

1. Introduction. The Green's functions for regions bounded by sur­
faces of the cylindrical coordinate system are well known.1 From them 
solutions may be obtained for problems in which the initial tempera­
ture is zero and the surfaces are kept at temperatures which are 
known functions of the coordinates; the application of Green's func­
tion in regions extending to infinity has not been completely studied 
and the conditions to be satisfied by functions prescribed in such re­
gions are not known. An alternative method of solving such problems 
consists of using the Laplace transformation and solving the resulting 
subsidiary equation by separation of variables ; here it is found neces­
sary to assume that temperatures given on surfaces extending to in­
finity satisfy very narrow conditions, such as those of Fourier's or 
Weber's integral theorems. This is illustrated in §3. Problems of con­
duction of heat in regions bounded by cylinders and planes, some of 
which extend to infinity, and with constant surface (and initial) tem­
peratures, or with a radiation boundary condition 

dv 
- + A ( * - * . ) - 0 

at a surface, are of considerable importance and the constant surface 
temperatures do not satisfy the conditions referred to above [cf. §3]. 
The method given below gives a simple solution of all such problems ; 
the results given form a complete set from which the solutions of all 
temperature problems in solids bounded by a cylinder and planes per­
pendicular to its axis, with constant surface (and initial) tempera­
tures, can be written down. Problems involving a radiation boundary 
condition at some of the surfaces, and problems on the hollow cylin­
der, may be solved in the same way. 

The method was suggested by that given in a previous note2 which 
consisted of the use of a double Laplace transformation ; this gives a 
solution under very wide conditions on the surface temperatures, 
roughly that they be of exponential type in the space variable. This 
method also allows verification that the solution obtained does satisfy 

1 Carslaw, Conduction of Heat (2d edition, 1921) chaps. 9 and 10; for a discussion 
using the Laplace transformation see Carslaw and Jaeger, Journal of the London 
Mathematical Society, vol. 15 (1940), p. 273. 

2 This Bulletin, vol. 46 (1940), pp. 687-693. This paper will be referred to as I. 
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the differential equation and boundary conditions. In I it was applied 
to problems on the semi-infinite strip but it may also be applied to 
problems involving cylindrical boundaries. The form of the solutions 
obtained by this process suggests a simple method of solving problems 
of the types referred to above. This is here applied to obtain solutions 
for regions bounded by surfaces of the cylindrical coordinate system 
with constant surface temperatures. In §2 one such problem is solved 
in detail to illustrate the method, and in §3 the solution is compared 
with that obtained by direct separation of variables. Other problems 
are solved briefly in §§4-7. 

The method given here is formal both in the application of the 
Laplace transformation and in that infinite processes are interchanged 
without justification; in special cases it can be verified directly that 
the results do satisfy the differential equations and initial and bound­
ary conditions; as remarked above this is best done by the method 
of I, when applicable. The use of the Laplace transformation and the 
method of evaluating and justifying solutions by the use of the inver­
sion theorem followed by contour integration will be assumed known3 

and used freely without comment. 

2. Heat conduction in the semi-infinite cylinder z>0, 0Sr<a; 
r = a maintained at unit temperature for z>0 and / > 0 ; z = 0 main­
tained at zero f or 0 ^ r < a, t > 0 ; the initial temperature zero. We have 
to solve 

d2v 1 dv d2v 1 dv 
(1) 1 1 = 0, 0 Sr < a, s > 0 , / > 0, 

dr2 r dr dz2
 K dt 

with 

(2) v = 1, r = ay z > 0, t > 0; 

(3) v = 0, 2 = 0, 0 = r < a, t > 0; 

(4) v = 0, / = 0, z > 0, 0 ^ r < a. 

We multiply (1) and its boundary conditions (2) and (3) by e~pt, 
R(P)>0, then writing 

(5) v(p) = f e-ptv(t)dt 
J o 

for the Laplace transform of v we obtain the subsidiary equation 

3 Cf. Carslaw and Jaeger, Proceedings of the Cambridge Philosophical Society, 
vol. 35 (1939), p. 394, and this Bulletin, vol. 45 (1939), p . 407. 
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d2V 1 dv d2V 
(6) 1 1 q2v = 0, 0 S r < a, z > 0, 

dr2 r dr dz2 

where 

(7) q* = P/K. 

This notation will be used throughout. Equation (6) is to be solved 
with boundary conditions 

(8) v = 1/p, r = a, z > 0; 

(9) Â = 0, z = 0, 0 g r < a. 

Equation (6) is satisfied by terms of type 

(10) J0(ram)e-*^+«^m 

where am, m = l , 2, • • • , a re t h e pos i t ive roo t s of 

(11) Jo(aa) = 0. 

As suggested by the form of the results obtained in I, we seek a 
solution of (6) of type 

(12) - ^ + £ i J o W r * ^ 1 " 
p h(qa) m . i 

in which the first term is the solution of the subsidiary equation for 
the infinite cylinder with unit surface temperature and the second a 
series of correcting terms which satisfy (6) and vanish when r = a, and 
whose coefficients Am are to be chosen so that (12) satisfies (9). This 
requires 

1 IQ(qr) " 
(13) — -f— + £ AmJo(ram) = 0, 0 g r < a, 

p h{qa) m=i 
that is, 

Thus 

Am — 
ap(q2 + a2

m)Ji(aam) 

(14) V = 2^ e-z(am+q ) / 
ph(qa) a w==i £(g2 + c&) Ji(aam) 

satisfies the subsidiary equation (6) and its boundary conditions (8) 
and (9). As remarked in §1 this result is obtained directly by the 
method of I. 
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From (14) v{t) is found in the usual way4 by the use of the inversion 
theorem for the Laplace transformation and we have finally 

v(t) = —^ e^v(\)d\ = 1 2 — " 
a„Ji(aam) 

4 * amJo(ram) Ç™ <r*«*2+«-> sin zu du 

ira m==i Ji(aam) J 0 u(u2 + c&) 

This may easily be put in the more suitable form for computation 

1 " Jo(ram) f , % Jo(ram) j 

ra=l amJi(aam) I a m=i amJi(aam) { 2(d)112 

(16) 

3. Comparison of the solution of §2 with that obtained formally by 
direct separation of variables in the subsidiary equation. Consider the 
problem of §2 but with r = a maintained at f(z) in place of unity for 
/ > 0 , z>0. The subsidiary equation (6) has to be solved with bound­
ary condition (9) and with 

1 
(17) v = —f(z), r = ayz>Q. 

P 
We seek a solution composed of terms of type Io(q'r) sin uz, where 

(18) q' = (q2 + u2yi2. 

Such a solution will be 

$ = I g(u)Io(q'r) sin uz du. 
J o 

This satisfies (6) and (9), and (17) requires 

ƒ. 
1 

g(u)Io(q'a) sin uz du = —f(z). 
o P 

If we assume that f(z) satisfies conditions for Fourier's integral 
theorem, for example, ƒ (s) satisfies Dirichlet's conditions and fof(z)dz 
converges absolutely, g(u) can be determined and we obtain 

4 Cf. Carslaw and Jaeger, loc. cit. 
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2 f°° h(rq') r00 

(19) v = — I sin uz du I /(g') sin uz' dz', 
7T Jo pl^aq') J o 

and hence, using the inversion theorem for the Laplace transforma­
tion, 

T \h(au) a m-i («I + u2)Ji(aam) J 

ƒ. jf(s') sin wis' (/g', 

where the am, w = l, 2, • • • , are the positive roots of Jo(aa)=0 and 
the method of solution is available only for the above restricted values 
of f(z). However, if we invert the orders of integration in (19) con­
vergent solutions may be obtained for functions f(z) which do not 
satisfy the conditions above, for example (15) may be obtained in 
this way. 

4. The region r>a, 0<z<l; z = l kept at unity for / > 0 ; the other 
surfaces at zero; the initial temperature zero. Here the subsidiary 
equation is 

dH 1 
(2D — + -

dr2 r 

to be solved with 

(22) v = 1/p, 

(23) v = 0, 

(24) v = 0, 

dv d2v 

dr dz2 

z = /, 

2 = 0, 

r = a> 

- q2v = 0, r > a, 0 < z < I, 

r > a; 

r > a; 

0 < z < I. 

The solution of the subsidiary equation for the infinite flat plate 
0 <z <l with boundary conditions (22) and (23) is (sinh qz)/(p sinh ql), 
so we choose for the solution of (21) 

sinh qz * mrz 
(25) v = ——- + ZJ An sin —— K0(rqn) 

p smh ql w==i I 
where 

(26) qn = (q2 + nW/l2)1'2. 

This satisfies (21), (22), and (23), and (24) requires 

sinh qz * mrz 
+ 2-j An sin — K0(aqn) = 0 p sinh ql n==i I 
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that is, 
2mr( — ) n 

Thus 
pl2qnK0(aqn) 

sinh qz 2TT n(-)nK0(rqn) . mrz 
(27) v = 1 2-f s m 

£ sinh g/ ^/2
 n==i q2

nKQ(aqn) I 
And, using the inversion theorem for the Laplace transformation, 

z 2 " ( - ) n Xo(»r r /0 WTTZ 

v = 1 2^ sin 
/ T n»i nK0(nira/l) I 

(28) 2<»(-)w^" l i n* l / ' s in 

J e-Ku «Co(«r, wa)dw | 

o **(^2 + »V/J 2 ) [J2o(wa) + Y2(ua)]f ' 
where 

(29) Co(*f y) = /o(*)F0(y) - Fo(*)/o(y). 

5. The region r>a , z>0; z = 0 kept at unity for t>0, r>a\ r = a 
kept at zero for JS>0 , / > 0 ; the initial temperature zero. Here 

(30) v = — €-** ^ - du, 
p wp J o u2 + q2 Ko(aq') 

where q and q' are defined in (7) and (18) respectively, satisfies the 
subsidiary equation and its boundary condition at 3 = 0. I t also satis­
fies the boundary condition at r — a since 

r™ u 

J o U 
sm uz 

— du = e~qz. 

Using the inversion theorem we obtain from (30) 

2 ç °° Ko(ur) sin uz 4 2 

e~*w *« sin wz Jw 
2 r Ko(ur) sm ws 4 r 

v — i I j ^ _| I 

7T J o uKo(ua) 7T2 J o 
(3D 

^i£o(^a) 

er*u'2tCo(ru'9 au')du' 

ƒ. o w'(^'2 + **)[/<?(**') + Yf (au')] 

6. The region r>a , z>Q; r = a kept at unity for z > 0 , / > 0 ; 2 = 0 
kept at zero for r>a, / > 0 ; the initial temperature zero. Here 
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My) 2 c" 
(32) # - - — 7 - + - - «-«-• 

^o(qa) irp J o 

1 Ko(qr) 2 Ç °° Co(ur, ua)udu 
— 1 I I e~zq' 
p Ko(qa) wp Jo (q2 + u2) I/o2 (ua) + YQ

2(ua) ] 

satisfies the subsidiary equation and its boundary condition at r = a. 
It also satisfies the boundary condition at 2 = 0, since, by Weber's in­
tegral theorem, 

Ko(qr) 2 C™ C0(ur, ua)udu 

Ko(qa) T Jo (q2 + u2) [j0
2(ua) + F0

2(ua)] 

It follows that 

2 /.°° e~uzCo(ru, au)du 
v = 1 + - ƒ 

7T J o 
u [ƒ o2 (au) + Y o2 (au) ] 

(33) 
4 r0 0 e~KuitCo(ru, au)udu r°° e~KU'2t sin u'z du' 
V2J0 Jo2(au) + F0

2(aw) J 0 ^(w2 + **'2) 

7. The finite cylinder and similar problems. In this section four re­
sults are given for completeness which are obtained by the method 
of §2; these problems may also be solved by the method of §3, and 
in all cases the transient parts of the solutions are identical, but the 
steady state parts are obtained in a different form. 

(i) The region 0 = r < a , z>0; 3 = 0 kept at unity for t>0, 0 ^ r < a ; 
r = a kept at zero for z > 0, t > 0 ; the initial temperature zero : 

1 2 f™ u sin uz Io(rq') 
(34) v = — e~qz I du, 

p irp J o q2 + u2 h(aq') 

where q and q' are defined in (7) and (18); 

2 r °° h(ur) sin uz du v = 1 ƒ 
J o 

ulo(ua) 
(35) " " 

4 * er'^'Joirom) r0 0 e~KU%tu sin uz du 

wa m==i amJi(aam) J o ( a l + u2) 
where the am are the positive roots of Jo(aa) = 0 . 

(ii) The region r>a, 0<z<l; r = a kept at unity for / > 0 , 0<z<l; 
the other surfaces kept at zero for t > 0 ; the initial temperature zero : 

Ko(qr) r°° 2 cosh q'(\l — z)Co(ru, au)udu 
(36) * = .„ , , + —T2 Jo 'Kpq2 pKo(qa) Jo 'Kpq'2 cosh %q'l[j0

2(ua) + Y0
2(ua)] 
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2 r °° cosh u(\l — s)Co(^^, au)du 
1 + 

2 r w 

TT J Q U cosh |/w [/o2 (aw) + F0
2 (aw) ] 

7 r 2 „ t a ( 2 » + l ) 

J
,0° e~Ku2tCo(ru, au)udu | 

o [w2 + (2ff + l)27T2/^2][/o2(aw) + Yo2(au)]f ' 
(iii) The finite cylinder 0 ^ > < a , 0 < s < / ; r = a kept at unity and the 

other surfaces at zero for t > 0 ; the initial temperature zero : 

, x h(qr) 2 " amJ0(ram) cosh (J/ — s)am 
(38) v = ———T 2^ 

ph(qa) a M=i pqiJi(aam) cosh |Zam 

where am, ra = l, 2, • • • , are the positive roots of j r
0 (oa)=0 and 

Si=(28+c£)1 / 2; 
2 " Jo(ram) cosh (J/ - s)am 

v = 1 2^ 

(39) 

a w=si amJi(aam) cosh |/a„ 

8 * (amJo(ram) 2 ~ (amJ 

a7rm=i I Ji(aam) 
- e-,c(2n+l)V</Z2

 g i n ( 2 ^ + l)7TZ//\ 

" h (2w + l)[a£ + (2fi + l ) V / P ] j * 

(iv) The finite cylinder 0 ^ r < a , 0 < s < Z ; * = / &e£/ a/ wm>y awa7 Âe 
o/Aer surfaces at zero for t > 0 ; /Ae initial temperature zero : 

sinh as 2w * n( — )nI0(rqn) nwz 
(40) v = 1 2^ sin ; 

p sinh g/ £/2
 n==i q2I0(aqn) I 

where qn = (q2+n2T2/l2)1/2; 

z 2 " {-yi^mrr/l) nwz 
v = 1 2^ s i n 

/ 7T n=i nIo(nwa/l) I 
(41) 

4 T T " W * " /o(mm)e-^(«-+-2-2/f2) 
H X) n{-Y sin 2-1 a n—\ I m-i «m(/2«i + n27T2)/i(aa:m) 

where am, ra = 1, 2, • • • , are the positive roots of Jo(aa) = 0 . 

T H E UNIVERSITY OF TASMANIA, 

HOBART, TASMANIA 


