ELEMENTARY PROOF OF A THEOREM ON
LORENTZ MATRICES

E. R. VAN KAMPEN

Let x and y be real #- and m-vectors and x2, y? the scalar squares
of x, y. The corresponding Lorentz matrices are matrices of (n-+m)-
dimensional real linear transformations which leave the quadratic
form x2—+y? invariant. Let the transformation be written in the form

) <A B)(x) Ax + By

( C D/ \y (Cx + Dy)'

Then the signs of the determinants IA | and IDI form two 1-dimensional
representations of the Lorentz group. Two algebraic proofs at present
available for this fact! depend on a recursive factorization of the
Lorentz matrix into simple factors or on deeper facts from the theory
of representations. On the other hand, a simple topological proof may
be given in quite an obvious manner. In this note the topological
proof is briefly sketched and then a simple algebraic proof is given
which does not depend on recursive factorization or representation
theory and is valid in any real field.

The set defined by x2—y2=1 in the real (z+m)-dimensional space
possesses one basic (#—1)-dimensional (finite) cycle T' which can
most easily be represented by the (z—1)-dimensional basic cycle of
the (#—1)-dimensional sphere x2=1, y=0. Now I is transformed by
(1) into a cycle homologous to +TI' or to —I' according as |A| is
positive or negative. The formal proofs of these topological facts are
obtained most easily from the remark that the whole space x2—y?2=1
can be retracted into its subset x2=1, y=0 by a deformation which
does not change the value of «x/(x?)V/2 for any point. That sign | 4 [ isa
one-dimensional representation of the Lorentz group is of course evi-
dent from the fact that I' is transformed by (1) into a cycle homolo-
gous to sign | A| -T. The statement concerning the signature of | D|
depends on a similar consideration for the set defined by x?2—y2< —1.

Now let the elements of the matrix in (1) belong to any real field.
Let the unit matrices of dimensions #» and m be denoted by E, and E,,.

The fact that the matrix in (1) is a Lorentz matrix may be expressed
by the relations:

L Cf. W. Givens, Factorization and signatures of Lorentz matrices, this Bulletin, vol.
46 (1940), pp. 81-85, where other references are given. My thanks are due to Dr.
Murnaghan who drew my attention to the above theorem.
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2) A'A — C'C = E,, DD — B'B=E,, A'B = C'D,

which may be obtained by forming the expression x2—y? for the vec-
tor on the right in (1).

If P is a matrix of m rows and 7 columns, such that E,—P’P is
positive definite, then the sign of the determinant |A +BP] is inde-
pendent of P; in particular | 4+BP| 0 and | 4| 0.

In fact, from (2) one easily obtains the identity

(4 + BP)'(4 + BP) = (C + DP)'(C + DP) + E, — P'P.

Since E,—P’P is assumed to be positive definite, this implies that
(A+BP)'(A+BP) is positive definite. Thus IA—I—BP[ #0 and, by
choosing P =0, also ]A | #0. On replacing P by tP, one sees that the
determinant IA +tBP| , which is a polynomial in the parameter ¢, is
never 0 while —1=<¢=<1. For E,—{?P'P=E,—P'P+(1—*)P'P is
positive definite if —1=<¢<1. Thus the polynomial |4 +¢BP| can-
not change its sign as ¢ varies between 0 and 1. In the field of real
numbers this is evident. If the underlying field is any real field, and if
the polynomial |A+tBP| took both possible signs for —1=¢<1,
then one could adjoin to the field a root of | 4 +¢BP| =0 which lies
between —1 and 1. In the enlarged field one obtains of course a con-
tradiction with the fact that | 4 +tBP| 50 for —1<t<1.
Let the product of two Lorentz matrices be written in the form

A: By As B, A145 + B:C: A1Bs + BiD,
(c1 D1> <C2 D2> B <C1A2 + DiCy CiBs + DIDQ>'
Then one has
A149 + BiCy = (A1 + BiCeA3V)As = (41 + B1P)A.,
where P=Cy4;!. But
E,— PP=E,— (4;)7'CyCod5! = (44) (A4 Ay — C{Co)A5!
= (47)7'4s7!

is a positive definite matrix, so that sign |A1-|-B1C2A2‘1| =sign
| 4,4+ BP| =sign | 4:]. Thus

sign |A1A2—|-BlC2[ = sign |A1|~sign IA2|.

This completes the algebraic proof of the above theorem.

The geometrical content of the proof becomes clearer, if one realizes
that the #-dimensional linear spaces with the equations y = Px (where
E,—P'P is positive definite) are precisely those spaces through the
origin which meet the quadratic x2—y?=1 in a completely elliptical
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quadratic (and the cone x2—y%=0 in its vertex only). Thus this sys-
tem of linear spaces is invariant under the Lorentz group. That the
sign of | A+BP| is independent of P means that the orientation of
all spaces y = Px is left invariant by a Lorentz matrix with |4]| >0
and is changed into its opposite by a Lorentz matrix with IA] <0.
Complications in preceding proofs of the theorem apparently origi-
nate either from the inclusion of the proof that every matrix P with
positive definite E— P’P is the matrix CA~! of a Lorentz transforma-
tion (1) and/or of the proof that the subgroup of the Lorentz group
defined by | 4| >0, | D| >0is connected.

The 1-dimensional representation of the Lorentz group given by the
determinants of the Lorentz matrix (1) is the product of the two repre-
sentations given by the signs of [A[ and IDI In fact, D as well as 4
is nonsingular. Thus?

4 B A4 B 4 —BDC 0
c D =|D|'ID—IC E =|D|'!D—IC E
=|D| |4 - BDC|,
so that, since BD-1=A4'-1C" and |4'| =|4],
A4 B | D | D
=|D| |4 —-4CC|={—|4'4-CC| ="
c D |4 | 4]
Thus the sign of
ol
C D
is the product of the signs of |D| and |4]. Since
A Bl_|A|
¢ pl |D|
may be similarly proved, one has
A B
c =sign | 4| - sign | D|.
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2 Cf. J. Williamson, The expansion of determinants of composite order, American
Mathematical Monthly, vol. 40 (1933), pp. 65-69.



