ON THE EQUATION dy/dx=f(x, y)!
ANDRE GLEYZAL

We consider here the differential equation dy/dx=f(x, y), where
f(x, ) is a one-valued function defined on an open region R of the
xy-plane. By a solution curve of this equation we mean a curve
y=9(x) which has a derivative at every point and which satisfies
everywhere the differential equation. There are known sufficiency
conditions on f for the existence of a one parameter family of solution
curves simply covering R. But, as Professor Bamforth mentioned to
me orally, there seems to be in the literature no corresponding neces-
sary conditions. We shall prove that one necessary condition is that f
be the limit of a sequence of continuous functions.?

A curve is the xy-plane will be termed a continuous function curve
if the points of the curve are the points (x, ¢(x)), a <x<b, where ¢(x)
is a one-valued continuous function defined on an open interval (a, b).
An open region R of the xy-plane will be said to be simply covered
by a set ¥ of such curves if:

(1) Every point of R is on one and only one curve of 7.

(2) Every curve of ¥ stretches from boundary to boundary of R;
that is, if Sis any set of points on a curve C of ¥, each limit point of .S
is either itself a point of C or a boundary point of R.

THEOREM. If an open region R of the xy-plane is simply covered by
a set F of continuous function curves y = (x), then for every point (x, yo)
of R there exists an open subregion Ry of R containing (x., vo) such that
the family of curves constituted by the portions of the curves of F in R,
1s representable by the equation y =¢(x, a), where ¢ is a continuous func-
tion of x and the parameter a.

Proor. Let (xo, ¥0) be a point of such a given region R; R; a rec-
tangle interior to R with (xo, y0) as center; and % a positive number
such that the points (xo, ¥o—#%) and (xo, yo+5%) are inside R;. Since ¥
simply covers R, there exist curves y=¢;(x) and y=¢s(x) of ¥ con-
taining the points (xo, ¥o—#%) and (xo, yo-+7%) respectively. Also, the
continuity of ¢1(x) and ¢s(x) insures the existence of an open interval
I containing xo such that the points of the curves y=¢:i(x) and

1] wish to express my thanks to Professor Henry Blumberg for his aid in the
preparation of this paper.

2 Of course, as is well known, the derivative f’(x) of a function f(x) has this prop-
erty. It may be expected that f(x, y) necessarily has also other properties correspond-
ing to known properties of f’(x).
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y=¢2(x), with x in I, lie in Ry. If (x1, x2) is a closed interval interior
to I and containing x,, we have ¢i(x) <pa(x) for x1<x =x., since
¢d1(x0) <¢a(x0) and no two curves of 7 cross each other. We denote by
R, the open region of points (x, ) bounded by the parallels x =x;,
x=x9, and the curves y=¢1(x), y =¢2(x). In view of conditions (1)
and (2) it readily follows that the interval of definition of any curve
y=¢(x) of ¥ having points in R, contains the entire closed interval
(21, x2).

We now define the function ¢(x, @), mentioned in the theorem, by
letting y =¢(x, a) be the equation of the curve of ¥ passing through
the point (x1, @) on the boundary of R. Thus ¢(x, a) is defined in the
region R, of the xa-plane, x; <x <xz, ¢1(x1) <a <z(x1). The family of
curves ¥y =¢(x, a), where x and the parameter a take on values in R,
is identical with the set consisting of the portions of the curves of ¥
which are interior to Ry. ¢(x, a) is a continuous function of x and a
in R,. For let (£, o) be a point of this region, € any positive number,
and @i, oz numbers such that y=¢(x, a1), y=¢(x, a2) are respec-
tively equations of the curves of ¥ which pass through the points
(& o(§, a)—¢€'), (& o(&, a)+¢€) of Ry, € being a positive number
less than €/4. Due to the continuity of ¢(x, @), considered as a func-
tion of x, we may find an interval I;, containing £, such that ¢(x, a1)
differs from ¢(£&, c1) by an amount less than €/4 for values of x in I.
Also, we may choose an interval I, such that ¢(x, o) differs from
¢ (£, a) by less than €/4 for x in I,. Thus ¢(x, @) differs from ¢ (&, @)
by less than e if ey<a<ay and x is in I J,—the interval consisting
of the points common to both I; and I,. Consequently, ¢(x, @) is con-
tinuous in Ro, and the theorem is proved.

LeEMMA. The function ¢(x, a) has a continuous inverse function a(x, y)
defined on Ro, which satisfies the identity ¢(x, a(x, y)) =y.

Proor. We associate with every point (x, y) of R, that value
a=a(x, y) such that the curve y=¢(x, a) passes through the point
(x, ). In short, ¢(x, a(x, ¥)) =y. The function a(x, y) thus defined is
continuous in R,. For suppose it were discontinuous at a point (£, )
of R,. Since ¢(x, a) is continuous at (&, a(&, 7)), and properly mono-
tone in @, the composite function ¢(x, a(x, y)), considered as a func-
tion of x and y, is discontinuous at (&, 7). But ¢(x, a(x, y)) =y for
points (x, ¥) in Ro and is therefore continuous at the point (&, 1), con-
trary to assumption. Therefore a(x, ) is continuous in R,.

THEOREM. For the existence of a family F of continuous function
curves simply covering R which are solution curves of the equation
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dy/dx=f(x, v), where R is an open region on which f is defined, it
s necessary that f be the limit of a sequence of continuous functions.

Proor. We consider f(x, ¥) given, and assume that a family ¥, as
described, exists. If (xo, ¥o) is a point of R there may be determined,
as we have shown, an open region R, containing the point such that
the portions of the curves of ¥ in R, are the curves y=¢(x, a),
21 <x <Xz, 01 <a<as. ¢(x, a) has, according to the above lemma, a con-
tinuous inverse function a(x, y) defined on R, for which ¢ (x, a(x, y)) =y.
Let RJ be the open subregion consisting of the points (x, ¥) of R,
where x,<x<xs—k, k being a positive number less than xs—x,. If
(& 7) is a point of Ry, the equation of the curve of ¥ which passes
through this point is y=¢(x, «), where a=a(§, 5). By hypothesis,
y=a¢(x, ) is a solution curve of the differential equation dy/dx =f(x, v).
At (&, n) this equation may be written:

&) = lim {$(¢ + k/n, a(t, ) — 6(£ alt, )}/ (k/n)
n—o

where 7 is a positive integer. For convenience, we denote the differ-
ence quotient present in the right-hand member of this equation by
¥a(& 7). Inasmuch as (£ 7) is a general element of R, we have
Sflx, v) =lim, ., ¥.(x, ¥) in this region. Moreover, ¥,(x, ¥) is continu-
ous since a(x, ¥) is continuous in RJ{ and ¢(x, @) is continuous at
points (x, a(x, ¥)) and (x+k/#, a(x, y)), where (x, ¥) is in RJ/. We
conclude that for every point (x,, ¥o) of R, there exists an open region
R{ containing (xo, ¥0) such that in R¢ the function f(x, ) is the limit
of a sequence of continuous functions.

It follows that f is the limit of a sequence of continuous functions
in its entire region of definition R. For let P be any perfect subset of
the points of the xy-plane containing points of R, and (xo, vo) any
point of PR. As we have seen, there exists an open region Ry contain-
ing (x9, yo) such that, in this region, f is the limit of a sequence of
continuous functions. The latter statement implies, it may be shown,
that PR has a point of continuity of f with respect to PR{ .? Clearly,
this point is a point of continuity of f with respect, not merely to the
subset PR{, but with respect to P, and by Baire’s theorem f is the
limit of a sequence of continuous functions.
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3 For, a necessary and sufficient condition that f(x, ¥), defined on an open region R
of the xy-plane, be the limit of a sequence of continuous functions is that every set
PR,, where P is a perfect set and Ry is an open subregion of R, have a point of con-
tinuity of f with respect to PR,. This is a slight modification of Baire’s theorem and is
proved in a paper On interval functions which the author is preparing for publication.



