
ON THE EQUATION dy/dx=f(x, y)1 
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We consider here the differential equation dy/dx=f(x, y), where 
f(x, y) is a one-valued function defined on an open region R of the 
ary-plane. By a solution curve of this equation we mean a curve 
y = y(x) which has a derivative at every point and which satisfies 
everywhere the differential equation. There are known sufficiency 
conditions on ƒ for the existence of a one parameter family of solution 
curves simply covering R. But, as Professor Bamforth mentioned to 
me orally, there seems to be in the literature no corresponding neces­
sary conditions. We shall prove that one necessary condition is that ƒ 
be the limit of a sequence of continuous functions.2 

A curve is the :ry-plane will be termed a continuous function curve 
if the points of the curve are the points (x, (j)(x)), a<x<b> where $(x) 
is a one-valued continuous function defined on an open interval (a, b). 
An open region R of the x^-plane will be said to be simply covered 
by a set J of such curves if : 

(1) Every point of R is on one and only one curve of J, 
(2) Every curve of J stretches from boundary to boundary of R; 

that is, if 5 is any set of points on a curve C of J, each limit point of S 
is either itself a point of C or a boundary point of JR. 

THEOREM. If an open region R of the xy-plane is simply covered by 
a set J of continuous f unction curves y =(fi(x), then for every point (x0, 3>o) 
of R there exists an open subregion R0 of R containing (XQ, yo) such that 
the family of curves constituted by the portions of the curves of J in Ro 
is representable by the equation y =<£(x, #)> where cj>is a continuous f unc­
tion of x and the parameter a. 

PROOF. Let (xo, 3>o) be a point of such a given region R; Ri a rec­
tangle interior to R with (xo, 3>o) as center; and h a positive number 
such that the points (x0, yo~h) and (xo, yo+h) are inside Ri. Since J 
simply covers R, there exist curves y=c/>i(x) and y=fa(x) of J con­
taining the points (x0, yo~h) and (xo, yo+h) respectively. Also, the 
continuity of 4>x(x) and <t>i{x) insures the existence of an open interval 
I containing xQ such that the points of the curves y=(/)i(x) and 

1 I wish to express my thanks to Professor Henry Blumberg for his aid in the 
preparation of this paper. 

2 Of course, as is well known, the derivative ƒ'(x) of a function ƒ(x) has this prop­
erty. It may be expected that ƒ (x, y) necessarily has also other properties correspond­
ing to known properties of ƒ'(#)• 

254 



ON THE EQUATION dy/dx=f(x,y) 255 

3>=</>2(#), with x in ƒ, lie in Ri. If (#1, X2) is a closed interval interior 
to / and containing XQ, we have 4>i(x) <cj>2(x) for #1^x^X2, since 
<£i(#o) <</>2(#o) and no two curves of J cross each other. We denote by 
Ro the open region of points (x, y) bounded by the parallels x=xh 

X == X2) and the curves y=(j>\{x), y = faix). In view of conditions (1) 
and (2) it readily follows that the interval of definition of any curve 
y=(j>{x) of J having points in RQ contains the entire closed interval 
Oi, X2). 

We now define the function </>(x, a), mentioned in the theorem, by 
letting y=<t>{x, a) be the equation of the curve of J passing through 
the point (xi, a) on the boundary of RQ. Thus <£(#, a) is defined in the 
region RQ of the xa-plane, x\<x<X2, faixi) <a<</>2(#i)- The family of 
curves y =<f>{xy a), where x and the parameter a take on values in RQ, 
is identical with the set consisting of the portions of the curves of J 
which are interior to RQ. </>(x, a) is a continuous function of x and a 
in HQ. For let (£, a) be a point of this region, e any positive number, 
and ait 0L2 numbers such that 3> =</>(#, ax), y=(j>(x, «2) are respec­
tively equations of the curves of J which pass through the points 
(£> 0(£> «) —e'), (£> <£(£> öO + e') of i^o, e' being a positive number 
less than e/4. Due to the continuity of $(#, a) , considered as a func­
tion of x, we may find an interval 7i, containing £, such that </>(#, ai) 
differs from </>(£, ai) by an amount less than e/4 for values of x in Ii . 
Also, we may choose an interval 72 such that </>(#, «2) differs from 
</>(£, a2) by less than e/4 for re in I2. Thus 0(x, a) differs from </>(£, a) 
by less than e if a i < a < a 2 and x is in 7i/2—the interval consisting 
of the points common to both 7i and J2. Consequently, <j>(x, a) is con­
tinuous in RQ, and the theorem is proved. 

LEMMA. The function <j>(x,a) has a continuous inverse function a(x,y) 
defined on RQ, which satisfies the identity </>(#, a(x, y))=y. 

PROOF. We associate with every point (x, y) of RQ that value 
a = a(x, y) such that the curve y=(j>(x, a) passes through the point 
(x, y). In short, <j>(x, a(xf y)) =y. The function a(x, y) thus defined is 
continuous in RQ. For suppose it were discontinuous at a point (£, rj) 
of RQ. Since <f>(x, a) is continuous at (£, a(£, rj)), and properly mono­
tone in a, the composite function </>(x, a(x, y)), considered as a func­
tion of x and y, is discontinuous at (£, rj). But </>(x, a(xt y))=y for 
points (x, y) in RQ and is therefore continuous at the point (§, 77), con­
trary to assumption. Therefore a(x, y) is continuous in RQ. 

THEOREM. For the existence of a family J of continuous function 
curves simply covering R which are solution curves of the equation 
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dy/dx=f(x, y), where R is an open region on which f is defined, it 
is necessary that ƒ be the limit of a sequence of continuous functions. 

PROOF. We consider f(x, y) given, and assume that a family J, as 
described, exists. If (xo, yo) is a point of R there may be determined, 
as we have shown, an open region Ro containing the point such that 
the portions of the curves of J in R0 are the curves y=<t>(x1 a), 
Xi<x<X2,ai<a<a2. 0(#, a) has, according to the above lemma, a con­
tinuous inverse function a(x, y) defined on R0 for which cf>(x, a(x,y)) =y. 
Let Ró be the open subregion consisting of the points (x, y) of Ro 
where Xi<x<X2 — k, k being a positive number less than #2 —xo. If 
(£, rj) is a point of R0', the equation of the curve of J which passes 
through this point is y=<l>(x, a), where a = a(£, rj). By hypothesis, 
y =0(#, a) is a solution curve of the differential equation dy/dx =f(x, y). 
At (£, rj) this equation may be written : 

ƒ(£, rj) = lim {*(£ + k/n, a(£, ??) - * & afo *))}/(*/») 

where w is a positive integer. For convenience, we denote the differ­
ence quotient present in the right-hand member of this equation by 
*An(£> ??). Inasmuch as (£, rj) is a general element of RQ , we have 
f(x, 3>) =limn.»oo $n(x, y) in this region. Moreover, \pn{x, y) is continu­
ous since a(x, y) is continuous in RQ' and 0(x, a) is continuous at 
points (xj a(x, y)) and (x+fe/n, a(x, y)), where (x, y) is in RÓ. We 
conclude that for every point (xo, 3>o) of i?, there exists an open region 
RÓ containing (XQ, yo) such that in JRO' the function ƒ (x, y) is the limit 
of a sequence of continuous functions. 

It follows that ƒ is the limit of a sequence of continuous functions 
in its entire region of definition R. For let P be any perfect subset of 
the points of the :ry-plane containing points of R, and (xo, yo) any 
point of PR. As we have seen, there exists an open region RÓ contain­
ing (#o, yo) such that, in this region, ƒ is the limit of a sequence of 
continuous functions. The latter statement implies, it may be shown, 
that PRO has a point of continuity of ƒ with respect to PRO .3 Clearly, 
this point is a point of continuity of ƒ with respect, not merely to the 
subset PRO, but with respect to P , and by Baire's theorem ƒ is the 
limit of a sequence of continuous functions. 

S T MICHAEL'S COLLEGE 

3 For, a necessary and sufficient condition that ƒ (x, y), defined on an open region R 
of the ry-plane, be the limit of a sequence of continuous functions is that every set 
PRQ, where P is a perfect set and Ro is an open subregion of R, have a point of con­
tinuity of /wi th respect to PRo. This is a slight modification of Baire's theorem and is 
proved in a paper On interval functions which the author is preparing for publication. 


