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4. Other cases. The corresponding theory for a non-algebraic curve 
is complicated by the fact that the number of polynomials of the nth 
degree in the orthogonal system increases with n, but is compen-
satingly simplified by the observation that the representation corre­
sponding to (2) holds for all values of x and y, so that (except for the 
assumption that the domain of orthogonality is all on one side of the 
line) the points where the straight line meets the curve are no longer a 
matter of special concern. If (xv, yv) are any n+1 distinct points on 
the line, independent polynomials of the nth degree orthogonal to 
every polynomial of lower degree with respect to the composite 
weight function are given by Kn(xvi yvy u, v). 

A similar conclusion holds for orthogonality on a two-dimensional 
region. 
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NOTE ON AN INEQUALITY OF STEINER1 
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Let Q denote the unit square 0 ̂ x, y S 1. If f(x, y) be any function 
defined and continuous on Q, the relation z=f(x, y) yields a continu­
ous surface defined over Q. The Lebesgue area2 of this surface will be 
denoted by L(f). Let z =fi(x, y), JS=/2(X, y) be two continuous surfaces 
defined over Q; then clearly z = [fi(x, y)Jrfi{x1 y)]/2 is a continuous 
surface defined over Q. The inequality of Steiner* states that 
£ ( [ / i + / 2 ] / 2 ) ^ [L(/ i )+Z(/ 2)] /2 . McShane4 obtained interesting and 
important results concerning the situation where the sign of equality 
holds in this relation. In this note we improve his results and, in a 
sense, give them a final form. 

In order to emphasize and to clarify what is significant and inter­
esting in the results of McShane and in our improvements thereon, 
we remind our reader of a few facts concerning the Lebesgue area.5 

Given a continuous surface z=f(xt y) defined over Q; if L(f) is 
finite then the partial derivatives fx and fy exist almost everywhere 
in Q, the integral ffQ[l+fl+fl]ll2dxdy exists, and the relation 

1 Presented to the Society, April 13, 1940. 
2 See S. Saks, Theory of the Integral, Warsaw and Lwów, 1937, chap. 5, for the 

facts used in this paper concerning the Lebesgue area. 
3 E. J. McShane, On a certain inequality of Steiner, Annals of Mathematics, (2), 

vol. 33 (1932), pp. 125-138. 
4 Loc. cit.3 

6 Cf.2 
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ffQ[l~^fl+fv]1,2dxdy^L(f) i s valid. The sign of equality holds in 
this last relation if and only if f(x, y) is absolutely continuous in the 
sense of Tonelli. Next, if a sequence of continuous functions fn(x, y) 
converges uniformly on Q to ƒ(#, y), then it is always true that 
lim infn̂ oo L(fn) *tL(f), but the sign of equality holds in this last rela­
tion only if the sequence/n(x, y) is chosen with extreme care. 

Suppose z=fi(x, y), z=f2(x, y) are two continuous surfaces defined 
over Q such that L([fl+f2]/2) = [L(fi)+L(f2)]/2. If we assume, for 
the moment, that both fi(x, y) andf2(x, y) are absolutely continuous 
in the sense of Tonelli, then so is [fi(x, y) +f2(x, y)]/2, and the preced­
ing equality is equivalent to 

r 2 2 T 1/2 r 2 2 -,1/2 

Using the inequality of Schwartz one sees that the integrand in (1) 
is never negative; thus the integrand is equal to zero almost every­
where in Qj which implies that fix=f2x, fiy—fiy almost everywhere 
in Q—that is, [(fix-f2x)2 + (fiy-f2y)2}î/2 = 0 almost everywhere in Q.6 

Now suppose we discard the assumptions that f\ and f2 are abso­
lutely continuous in the sense of Tonelli; then, of course, the pre­
ceding reasoning yields no result. Still McShane proves that 
[(/i*~~ hx)2Jt{fiy— f2y)2]1/2 = 0 almost everywhere in Q. Indeed, he 
proves a sharper result to the effect that, when [L(fi)+L(f2)]/2 
-L([fl+f2}/2) is small, then [( / i , - /2x)2 + (/i î /-/2 !;)

2]1/2 is small in 
measure, so to speak—quite exactly, he establishes a contrapositive 
statement:7 If the functions f\(x, y),f2(x, y) are defined and continuous 
on a square Q and there exist positive numbers G, e, 8 such that 

(1) L(fd£G,L(f,)£G; 
(2) [(fix—f2x)2 + (fiy— /2y)2]1/2^€ on a set of measure at least equal 

to 6; 
then 

L([fi + /2]/2) ^ [L(f,) + L(f2)]/2 - „(G, 6, 5), 

where ix is a positive number whose value depends only on G, e, and ô. 
We improve this result by replacing smallness with respect to 
6 From this it follows (loc. cit.,3 Theorem I) that f\—fi is constant on Q, but we 

shall not be concerned with this fact. 
7 Loc. cit.,3 Theorem IV. 

m 
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measure by smallness with respect to exponent. First, we show that, 
iffi(x, y) andfiix, y) are two continuous f unctions defined on the square 
Q for which L(f\) and L(f2) are both finite, then 

(2) * Q 
{f I [ ( / l * ~ hxY + ifly ~ f»Wdxdy) 

Since the Holder inequality reveals 

{ƒƒ. [(/i* - ƒ2x)2 + (fiy - hvYf'Hxdy^ 
2/X 

to be a non-decreasing function of X, it follows that, for every expo­
nent X satisfying 0 <X S1/2, it is true that 

(3) 
{ ƒ ƒ [(/l* ~ fix)i + {flv ~ f^Wdxdy} 

2/X 

ilm+L(m,[m±m„L(â±âjj. 
Next, we prove that, under the same assumptions, it follows that 

{ƒƒ[(/l* " hx)2 + {flv ~ f*w*dxdy} 

for every exponent X satisfying 1 / 2 ^ X ^ 1 . The reader will observe that 
inequality (4) reduces to (2) for X = 1/2. 

Let, now, fn(x, y) be a sequence of continuous functions converging 
uniformly on Q to f(x, y) ; assume that L(fn) and L(f) are finite, and 
that L(fn) converges to L(f). Under these hypotheses McShane proves 
that [(fnx—fx)2 + (fny—fy)2]112 converges to zero in measure.* We im­
prove this result by showing that under these hypotheses it is true that 

(5) lim f f [(ƒ«, - fxY + (fny - f„y]v*dxdy = 0 
n—>oo J J Q 

for every exponent X satisfying 0 < X < 1 . Since McShane has shown 

8 Loc. cit.,3 Theorem V. 
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that the relation (5) is not generally true for the exponent X = l,9 our 
result is the best obtainable under the given hypotheses. 

In fact, we shall give two proofs for relation (5). One proof will 
reveal this result as an immediate consequence of inequalities (3) and 
(4) ; the other will depend upon a general lemma concerning the Le-
besgue integral. 

We proceed presently to the proof of inequality (2). Given two 
continuous functions fi(x, y), f2(x, y) defined on Q for which L(fi)> 
L(J2) are both finite; then fix, fiy;f2x, f2y exist almost everywhere in Q. 
Set 

« = L(/i. - h*)2 + (fiy ~ hvY\m\ v= 1+ flxf2x + flyf2y; 
r 2 2 -1I/2 r 2 2 -.1/2 

wi = U + fi» + hv\ ; w* = [l + ƒ20; + M ; 
w = [1 + ([A, + /2*]/2)2 + ([fiv + /2.J/2)2]1'2; 
a = (wi + w2)/2 — w; fi = (wi + w2)/2 + w\ 

7 = W1W2 — v; ô = W1W2 + Ü. 

The reader will easily verify the following identities : 

(6) a + 0 = wi + w2, a-j8 = 7/2, 

(7) 7 + à = 2^ iW 2 , 7-Ô = ^ 2 + (/ia/2y ~ faxflvY-

Now (7) implies that 7 ^ 0 , 5 ^ 0 , whence it follows that a / 3 ^ 0 , and 
that 

5 ^ 2w\W2 ̂  (^1 + w2)
2/2. 

In view of these relations (6) implies that a ^ 0, j8 ^ 0 ; hence j3 ^ ze>i+w2. 
So the reader sees that 

(8) ^2 ^ 7Ô = 2a/3<5 ^ (wi + w2)3{Oi + w2)/2 - w}. 

As we observed above, it is true that 

(9) f f Widxdy ^ L(J%), i = 1, 2. 

A reasoning of McShane10 shows that 

I I {(wi + w2)/2 — w}d#d)/ 
( 1 0 ) Q ^ [L(fi) + L(ft) ]/2 - £([/x + M/2). 

Using the Holder inequality the reader will speedily verify that in­
equality (2) follows from (8), (9), and (10). 

9 Loc. cit.,3 Theorem VI, 
10 Loc. cit.,3 p. 129. 
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We proceed next to establish inequality (4). It follows by the tri­
angle inequality that W ^ W L + W 2 ; hence we have from (9), 

(11) ƒ ƒ [(/i , - ƒ2,)2 + (fiy - M*]l'*dxdy S L(f0 + Uf2). 

Suppose that X2 is a positive number and F(x, y) is a non-negative 
function such that F*2 is summable on Q. If Xi be any positive number 
less than X2, it follows by the Holder inequality that F*1 is also sum­
mable on Q. Now every number X satisfying Xi ^X ĵX2 may be written 
in the form X = aiXi+o/

2X2, where O^ai , a ^ l , «1+0:2= 1. From the 
Holder inequality we have 

(12) f f FHxdy S \ f f F^dxdy I Iff F^dxdy] \ 

The reader will verify that (4) follows from (2), (11), and (12) with 
jp=«,Xi = l/2,X, = l . 

Now let fn(x, y) be a sequence of continuous functions converging 
uniformly on Q to f(x, y) ; assume that L(fn) and L(f) are finite, and 
that L(fn) converges to L(f). We first show that 

(13) £[x«^_ i (M_0].o. 

Since (ƒ»+ƒ)/2 converges uniformly to ƒ on Q, it follows that 

(14) lim inf L (— A è L(f). 

B u t Hiring [L(fn) +L(f) ]/2 =£(ƒ) , and by the inequality of Steiner it 
follows that L( [fn+f]/2) g [£(ƒ») +L(f) ]/2. Thus 

(15) Hm sup L ( ^ 1 ) S L(f). 

From (14) and (15), the assertion in (13) follows. 
Now the inequality (3) shows that, for 0 < X ^ l / 2 , it is true that 

ƒƒ. [<ƒ.. - f*)* + (ƒ». - f,)lY'ldxdy 

while inequality (4) shows that, for 1 / 2 ^ X ^ 1 , it is true that 
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ƒ ƒ [(ƒ». " f*Y + (ƒ»«, ~ fv)2Y'2dxdy 

m stew + i(/)1««»{^±^-i(A±/)]"-"". 
From (13), (16), (17) the relation (5) clearly follows. 

In order to give a second proof of relation (5) we use the following 
lemma.11 Let Fn(x, y) be a sequence of non-negative functions defined 
on Qfor which there exists a positive number Xo such that (1) the functions 
Fn converge to zero in measure; (2) the functions F^0 are summable on Q; 
(3) the integrals JfçiF^dxdy are uniformly bounded by a positive number 
M. Then, for every positive number X less than Xo, it is true that 
l i m ^ ffQFndxdy = 0. 

PROOF. Given e>0 , since Fn converges to zero in measure there 
exists a positive integer n(e) such that, for every n>n(e) the set En(e) 
of points (x, y) in Q for which Fn(x, y) ^e1 / A is of measure less than 
exo/(Xo-x). j|f-x/(Xo-x)# N o w obviously 

(18) J I F^dxdy = \ \ FX
ndxdy+ \ \ F^dxdy. 

On Q — En(e) it is clear that F„(x, y)^e\ hence 

(19) f f Fldxdy ^ e. 
J J Q-En(t) 

Using the Holder inequality, we have, for n>n(e), 

J J E, 
Fndxdy 

(20) ' * ' w 

[~ r r x ~iWXor /» /» n(x0-x)/x0 
^ Fn°dxdy dxdy < e. 

L.J J En(t) J LJ J En(e) J 
Since e is arbitrary, the lemma follows immediately from (18), (19), 
(20). 

Now let fn(x, y) be a sequence of continuous functions converging 
uniformly on Q to a function/(x, y) ; assume that L(fn) and L(f) are 
finite, and that lining L(fn) =L(f). Consider the sequence of functions 
Fn(x, y) = [(fnx—fx)2 + (fny—fv)2]1/2. In view of the results of McShane 

11 This lemma is an immediate corollary of certain important results of F. Riesz, 
Untersuchungen iiber Système integrierbarer Funktionen, Mathematische Annalen, vol. 
69 (1910), pp. 449-497. We give a direct proof for the convenience of the reader. 
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stated above, it is clear that this sequence of functions satisfies the 
three conditions of the preceding lemma with X0 = l . Thus, for every 
exponent X satisfying 0 <X < 1 it is true that 

lim f f [(ƒ„* - fxy + (fny - fvy\v*dxdy = 0. 

So we have a second proof of our result (5). 
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