
SYSTEMS OF ORTHOGONAL POLYNOMIALS ON CERTAIN 
ALGEBRAIC CURVES1 

FULTON KOEHLER 

1. Introduction. A system of orthogonal polynomials in two real 
variables x and y can be defined with respect to any domain of in­
tegration in the xy plane and any nonnegative weight function which 
has a positive integral over that domain. Although a general study 
of the formal properties of such systems has been made,2 the corre­
sponding problem of convergence has been adequately dealt with 
only for cases which reduce almost immediately to familiar problems 
in a single variable. The purpose of this paper is to give more sub­
stantial examples of systems for which it is possible, by special meth­
ods, to present an account of convergence which is fully comparable, 
at least in some of its main features, with such highly developed 
theories as those of Fourier and Legendre series. 

The proofs, as in the case of series of orthogonal polynomials in one 
variable with a more or less general weight function, can be made to 
depend on properties of boundedness. The method used here for ob­
taining these properties is to establish relationships between the sys­
tems in two variables considered and systems in one variable whose 
properties are well known. 

The domain of integration to which primary consideration is to be 
given is the perimeter of the square whose sides are segments of the 
lines x= ±lf y= ±1. Two other domains will be dealt with briefly 
in a concluding section. 

The square contour will be denoted by the letter C. We shall take 
the following sequence as the basis for the construction of a set of 
orthogonal polynomials on C: 1, x+y, x—y, xy, x2+y2, x2—y2, 
x2y+xy2, x2y — xy2, xz-\-ys, xz —yz, • • • , xn~1y+xyn~l, xn~xy— xyn~l, 
xn+yn, xn—yn, • • • . The terms of this sequence have the property 
that any finite number of them are linearly independent on C; and 
also, by means of the identity x2y2—x2—y2 + l = 0 which holds every­
where on C, any polynomial in x and y can be expressed on C as a 
linear combination of them. If p(x, y) is a function which is positive 
almost everywhere on C, we can multiply each member of the se­
quence by p1/2 and apply the Schmidt process of orthogonalization, 

1 Presented to the Society, April 14, 1939. 
2 D. Jackson, (1) Formal properties of orthogonal polynomials in two variables, Duke 

Mathematical Journal, vol. 2 (1936), pp. 423-434. (2) Orthogonal polynomials on a 
plane curve, Duke Mathematical Journal, vol. 3 (1937), pp. 228-236. 
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thus obtaining an orthogonal system of polynomials with respect to 
the weight function p(x, 3/). Let these polynomials be normalized and 
given positive leading coefficients, where the leading coefficient of a 
polynomial is defined as being the coefficient of the last member of 
the above sequence which appears in it. We shall denote the poly­
nomials thus uniquely defined by pnk(x,y), where n is the degree of 
the polynomial, and & is 1, 2, 3, or 4 according as the leading term is 
the first, second, third, or fourth term of the nth degree in the above 
sequence. 

2. Boundedness of the normalized polynomials for some weight 
functions. Let Pn [x; f(x) ] be the polynomial of the nth. degree in the 
normalized orthogonal system on the interval ( — 1 , 1) corresponding 
to the weight f unction ƒ (x). 

THEOREM I. Ifp(x, y) =p(y, x) =p( —x, —y)for all points (x, y) of C, 
and if the polynomials Pn[x; p(x, 1)] are uniformly bounded for all 
values of n on every closed interval interior to ( — 1 , 1), then the polyno­
mials pnk(x, y) are uniformly bounded f or all values of n and k on every 
closed point set of C not including one of the corner points. 

To prove the theorem it is first necessary to point out certain facts 
regarding integration over the contour C. The integral of any func­
tion g(x, y) over C is given by the formula 

I gO, y)ds = J g(x, l)dx + I gO, - l)dx 

+ J g(\,y)dy+\ g(-l,y)dy. 

Hence, if g (x,y) = —g(y,x) at all points of Cor if g(x,y) = —g( — x, —y) 
at all points of C, fcg(x, y)ds*=Q. From this it is possible to prove that 
each polynomial pnk(x, y) is either symmetric or skew-symmetric and 
that each is either even or odd; that is, pnk(x, y) = ±pnk(y, x) and 
Pnk(x, y) s ±pnk(-x, -y). 

The polynomial p2n,i(Xj y) is therefore a linear combination of the 
terms x^^y+xy2"*-1, x2n-2+y2n~2, x2n-zy+xy2n~z, • • • ,x2+y2, xy, 1. 
I t has the following properties of orthogonality: 

L 
f P O , y)p%n.i(*> y)(x2k + y 2 k ) d s = o, * = 0 , 1 , •. • , n - 1, 

J c 

P O , y)P*n.i(x> y)(x2k~~1y + xy2k-1)ds = 0, k = 1, 2, • • • , » — 1. 
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The integrands in these two equations are even and symmetric and 
the integral over C of such a function is equal to four times the in­
tegral of that function over any one side of C Hence, 

ƒ p(«, l)fin.i(*, 1)(*2* + l)dx = 0, k = 0, 1, • • . , n - 1, 

I pO, l)p2n,i(%> lX*2*""1 + %)d% = 0, k = 1, 2, • • • , n — 1. 

That is, £2n,i(#> 1) is a polynomial in x of degree 2^ — 1 which is or­
thogonal over ( —1,1) with p(#, 1) as weight function to 1, x, x2, • • • , 
x2n~2. Hence, 

P%n.l(%> 1) = (l /2)P2n-l[^; Pi*, 1)]. 

By similar methods it can be shown that p2n,2(x, l)/(x2 — 1) is a 
polynomial of degree 2w — 3 which is orthogonal over ( — 1 , 1) with 
(1 — x2)2p(x, 1) as weight function to 1, x, x2, • • • , x2n~4; and so 

p2n,2(x, 1) = (l/2)(*2 - l ) P 2 „ - 3 k (1 " %2)2p(%, 1)]. 

The corresponding formulas for the other two polynomials of even 
degree and the four of odd degree are 

p2nA%, 1) = (l/2)P2n[*;p(tf, 1)], 

p2nA(x, 1) = U / 2 ) 0 2 - l)PM[x; (1 " *2)«p(«, 1)] , 

p2n+l,l(x, 1) = (1/2) U + l)P2n-lW, (1 + *)2p(*, 1) ] , 

^2tt+l,20, 1) = (1/2)(X ~ l)P2n-l[*; (1 - X)2p(^, 1)], 

P2n+l,z(x, 1) = ( l /2)(* + l)Ptn[x; (1 + *)2p(tf, 1) ] , 

p2n+lAx, 1) = ( l /2)(* - l)P%»[x; (1 - *)2p(*, 1)] • 

I t is well known that if the polynomials Pn[x; f(x)] are uniformly 
bounded on every closed interval interior to ( — 1 , 1), then the poly­
nomials Pn[x; w(x)f(x) ] are likewise bounded provided T(X) is a poly­
nomial which does not vanish on the interior of the interval ( — 1, 1). 
Hence, the above formulas, together with the fact that each polyno­
mial pnk(x, y) is symmetric or skew-symmetric and even or odd, es­
tablish the theorem. 

I t is of interest to note that if p(x, y) = \y+x\ a\y—x\fi where 
a> — 1, j8>—1, then the polynomials pnk(x, 1) are expressible in 
terms of Jacobi polynomials. 

3. Convergence theorems. Let f(x, y) be any function of x and y 
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which is integrable in the sense of Lebesgue over C and let us con­
sider the series 

oo 4 

(1) ]C ]C ankpnk(%y y) 

where ank=fcp(ui ^)/(^> v)pnk(u, v)ds and where (x, y) is any point of 
C. (For convenience of notation we define £02, £03, £04, piz, pu, and p24 
to be identically zero.) Let Kn(x, y, u> v) =]£»-oS*-i/>»*(*» y)pmk(u, v), 
and let Sn(x, y) be the partial sum of (1) through terms of the nth. de­
gree. Then 

(2) Sn(x, y) - ƒ(*, y) = I P O , »)[ƒ("> ») - /(a?, y)]Kn(x, y, u, v)ds. 
J c 

(In formulas where x, y, u, and v appear under the integral sign u 
and v are to be taken as the variables of integration.) By using a 
formula3 for Kn(xy y, u, v) analogous to the Christoffel-Darboux iden­
tity, the difference 5»(#, y) — f(x, y) can be expressed as a sum of a t 
most thirty-two terms of the form 

/

f(u, v) — f(x, y) 
p(u, V) — — T T — , n N Pmk(u, V)ds 

c (Au + Bv) — (Ax + By) 

where A and B are any arbitrary constants, where k is a constant 
numerically less that | A | + 1 B | , and where m and j take on the val­
ues n and w + 1. The problem of convergence at a specified point thus 
reduces to proving that an expression of the form (3) approaches zero 
as n becomes infinite. 

LEMMA 1. If the weight function p(#, y) is of such a nature that the 
corresponding polynomials are uniformly bounded on every closed point 
set of C not containing a corner point and if </>(x> y) is a function such 
that p0 is integrable over C and p<f>2 is integrable over some neighborhood 
on C of each corner point, then 

lim I p(u, v)<j>(u, v)pnjc(u, v)ds = 0, k = 1, 2, 3, 4. 
n-00 * C 

The proof of this lemma is omitted since it can be easily con­
structed from proofs already known.4 On the basis of this lemma we 
can now prove the following assertion : 

3 D. Jackson, (1), p . 433. 
4 See, for example, D. Jackson, Series of orthogonal polynomials^ Annals of Mathe­

matics, (2), vol. 34 (1933), pp. 536-537. 
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THEOREM I I . Assume 
(a) the weight f unction p(x, y) is such that the corresponding polyno­

mials pnk(x, y) are uniformly bounded on every closed point set of C not 
containing a corner point) 

(b) (x, y) is a point of C, not a corner; 
(c) the function pf is integrable over C and pf2 is integrable over a 

neighborhood on C of each corner point; 
(d) the function 

f(u, v) - ƒ(*, y) 
p(u, v) 

{u — x) + (v — y) 
is integrable over some neighborhood on C of the point (#, y). 

Then the series (1) converges at the point (x, y) to the value f {x, y). 

Let us first make the additional hypothesis that there is a point 
(x', yf) on C on the interior of a side different from the one containing 
(xf y) such that the function 

p(u, v) 
(u — %') + (v — y') 

is integrable over some neighborhood on C of the point (x', y'). De­
termine A and B so that the straight line A(u —x)+B(v —y) = 0 in 
the uv plane passes through the point (x', y'). Then in some neigh­
borhood on C of (x, y) the expression A(u—x)+B(v —y) is a non-
vanishing constant multiple of u—x+v— y and in some neighborhood 
of (x', y'), of u— x'+z> — y'. If we let 

4̂(w — x) + •#(*> — 3>) 

then p0 is integrable over C and p<£2 is integrable over a neighborhood 
of each corner point; hence, by Lemma 1, the entire expression (3) 
approaches zero as n becomes infinite, which insures the convergence 
of (1) to the value ƒ (x, y). 

To prove the theorem in the general case let us choose two distinct 
points (x', y') and (x", y"), each on the interior of a side of C differ­
ent from the side containing (x, y), and let us define a function g(uy v) 
to be equal to f(u, v) throughout neighborhoods of (x, y) and (x', y')f 

equal to g(x, y) =/(x , y) throughout a neighborhood of (x", y"), and 
equal to zero elsewhere on C. Then the series of form (1) correspond­
ing to the functions ƒ—g and g will converge at the point (x, y) to 
the values/(x, y) — g(x, y) and g(x, y) respectively. Hence, the series 
for ƒ will converge at the point (x, y) to the value ƒ (x, y). 
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COROLLARY. If the f unction f is such that pf is integrable over C and 
pf2 is integrable over a neighborhood of each corner point, the behavior of 
the series (1) at a point (x, y) on the interior of a side of C depends only 
on the behavior of the function f{u, v) in the neighborhood of that point. 

A study of the uniform convergence of (1) to a continuous function 
f(x, y) can be made with the same methods that have been used in a 
study of Legendre series.6 In applying these methods it is first neces­
sary to consider the degree of polynomial approximation obtainable 
over the contour C to a function which is continuous on C. By adapta­
tion of existing theorems6 with regard to polynomial approximation 
on an interval, the following conclusion is obtained: 

THEOREM I I I . If the polynomials pnk(x, y) are uniformly bounded 
and the weight function p(x, y) bounded on every closed point set of C 
not including one of the corner points and if ƒ(x, y) is a function such 
that f (x, ±1) and f ' ( ± 1 , x) have continuous pth derivatives (p^O) on 
the interval ( — 1, 1) with moduli of continuity at most equal to co(ô) ; 
then, for every rj>0, 

. i K log n 
Sn(x, y) - ƒ(*, y) S 5 _ „(1/n) 

np 

for all (x, y) on C not within a distance rj of any corner point and for all 
n>l, the constant K being independent of n and of (#, y) but dependent 
on rj. 

4. Other contours. The methods used in the convergence proofs of 
the preceding section are applicable to orthogonal systems over a 
highly general contour provided the normalized polynomials of the 
system possess the requisite property of boundedness on that con­
tour. There has been as yet, however, no general method devised for 
establishing the latter property. Two other ranges of integration for 
which the result can be established by reasoning similar to that al­
ready used are a pair of bisecting line segments and a pair of con­
centric circles. 

An orthogonal system over the first of these domains will have two 
polynomials of the nth. degree for w ^ 1. If the range is taken as con­
sisting of the portions of the x and y axes contained in the intervals 
— l ^ x ^ g l , — l^y^l, the two polynomials of nth degree of a nor­
malized, orthogonal system corresponding to a symmetric weight 

5 See, for example, D. Jackson, The Theory of Approximation, American Mathe­
matical Society Colloquium Publications, vol. 11, New York, 1930, pp. 25-32. 

6 D. Jackson, loc. cit., pp. 13-18. 
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function p(x, y) are given by the formulas 

pnl(x, 0) = 2~u*Pn[x; pO, 0)], pn2(x, 0) = 2~^xPn^[x; x*p(x, 0)], 

Pnk(x, y) = ( - l)k-lpnk{y, x). 

The convergence theorems for this system are similar to those of the 
last section with the points ( ± 1, 0), (0, ± 1), (0, 0) appearing as excep­
tional points analogous to the corner points of the square. 

The contour made up of two concentric circles is an example of a 
contour which has no singular points. An orthogonal system over this 
contour will have four polynomials of the nth. degree for n^3. If the 
two circles are taken with center at the origin and radii a and ô, the 
polynomials of a normalized system corresponding to the weight func­
tion 1 are represented by the formulas 

pnk(a cos 6, a sin 0) = ankx cos nd + ank2 cos (n — 2)6, 

pnkib cos 6, b sin 6) = pnki cos nd + pnk2 cos (n — 2)6, k = 1, 3. 

The formulas for pn% and pn± are of the same form with the cosines 
replaced by sines. The constants ankm and finkm involved in the formu­
las are bounded for all values of n, k} and m\ so the polynomials them­
selves are uniformly bounded over the entire contour. The conver­
gence theorems for this system of polynomials can thus be formulated 
without reference to any exceptional points. 
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