$$\sigma_0 \leq \limsup_{n \to \infty} (2 \log n) / \nu_n$$
.

In order that $\sigma_0 \leq 0$, in which case (3.1) will converge in the right half of the s-plane, it is sufficient that ν_n tend to infinity faster than $\log n$. The argument used to complete the proof of Theorem 2 is the same as the one used above in connection with Theorem 1.

Notice that if $\{\nu_{n+1}-\nu_n\}$ is not a null sequence, then ν_n tends to infinity faster than log n. This eliminates the extra restriction used in the proof of Theorem 1.

NORTHWESTERN UNIVERSITY

ON CERTAIN IDEALS OF DIFFERENTIAL POLYNOMIALS*

I. F. RITT AND E. R. KOLCHIN

Introduction. Let Σ be an ideal of differential polynomials in the unknowns y_1, \dots, y_n . If the manifold of Σ is composed of s manifolds $\mathfrak{M}_1, \dots, \mathfrak{M}_s$ not necessarily irreducible, none of which has a solution in common with any other, Σ has a unique representation as the product of s ideals $\Sigma_1, \dots, \Sigma_s$ whose manifolds are, respectively, the \mathfrak{M}_i .

Most of the present note is concerned with decompositions of the foregoing type and considers the case in which one of the \mathfrak{M}_i , say \mathfrak{M}_1 , is composed of a single solution, that is, of a set of functions $\bar{y}_1, \dots, \bar{y}_n$ contained in the underlying field. We shall examine, for this special case, the structure of the ideal Σ_1 . Details will be given only for the case of a single unknown; the extensions to several unknowns are too obvious to require explicit mention. It will suffice, furthermore, to treat the case in which \mathfrak{M}_1 is composed of the solution y=0.

In §9, we consider a problem closely related to the theorem of decomposition stated above.

1. On the structure of Σ_1 . Let Σ be an ideal of forms in the unknown y. Let y=0 be an essential irreducible manifold for Σ . Let Σ be the product of Σ_1 and Σ_2 where Σ_1 has y=0 as its manifold and Σ_2 does not admit y=0 as a solution. Let p be a positive integer such that y^p is contained in Σ_1 .

^{*} Presented to the Society, September 8, 1939.

[†] Proceedings of the National Academy of Sciences, vol. 25 (1939), p. 90. Product is defined in the expected way. That the intersection of the Σ_i is identical with their product follows immediately from the fact that the Σ_i , considered as algebraic ideals, are paarweise teilerfremd. See van der Waerden, Moderne Algebra, vol. 2, p. 46.

We shall prove that Σ_1 is the ideal generated by Σ and y^p , that is, the intersection of all ideals containing Σ and y^p .

PROOF. Obviously Σ_1 contains the ideal generated as above. What has to be proved is the converse of this fact. Let G be any form in Σ_1 . Σ_2 contains a form 1-H, where H vanishes for y=0. Then Σ contains G(1-H) and, therefore, $G(1-H^q)$ where q is any positive integer. Now, if q is large,

$$(1) H^q \equiv 0, (y^p).$$

Let q be fixed at a value large enough for (1) to hold, and let $M = G(1 - H^q)$. Then $G \equiv M$, (y^p) , and this establishes the theorem.

2. Condition for p to be unity. We are going to examine now the case in which Σ contains a form of the type y+A, where A, considered as a polynomial in the y_i , has no term of degree less than 2. Ideals of this type form a natural and interesting class; a very special example is the ideal generated by $y_i^2 - 4y$. We are going to prove that the p of §1 may be taken as unity. That is, Σ_1 consists of all forms which vanish for y=0.

What we have to prove, of course, is that Σ_1 contains y. Our procedure will be as follows. For some p, y^p is in Σ_1 . Then, for any i, $y^{2^{ip}}_i$ is in Σ_1 . Let F = y + A be the form mentioned in the statement of our theorem. Then

$$(2) y \equiv -A, (F).$$

We shall subject (2) to an iterative process and derive a relation $y \equiv K$, (F), where every term of K contains some $y_i^{2^i p}$ as a factor, i depending on the term. This will establish the theorem.

3. Bound on degrees. Let a form P in y be of degree g in some y_i , $j \ge 0$. We shall show that P', the derivative of P, has a degree in y_i which does not exceed g+1. For let L, any term of P, be divisible by y_i^a with $q \le g$, and by no higher power of y. Let $L = y_i^a M$. We have, indicating first derivatives by an accent,

$$L' = q y_{i}^{q-1} y_{i+1} M + y_{i}^{q} M'.$$

M' consists of a set of terms, one of which will be divisible by the first power of y_i if M involves y_{i-1} . This is enough to prove our statement.

4. The first substitution. Let us suppose that, in addition to (2), we have a second relation $y \equiv B$, (F). In the second member of (2), let y be replaced by B and each y_i by the jth derivative of B. Then -A goes over into a form C. It is easy to see that $y \equiv C$, (F).

Let r be a positive integer which is not less than the order of A in y. Let g be an integer, exceeding unity, such that each term of A is of total degree not less than g in y, \dots, y_r . In A, we replace y_i by $-A^{(j)}$, $j=0,\dots, r$, superscripts indicating differentiation.* Then -A goes over into a form A_1 and $y \equiv A_1$, (F). Each term in A_1 is of total degree not less than g^2 in y, \dots, y_{2r} . By §3, the $A^{(j)}$, $j \leq r$, are of degree not greater than r in any one of the letters y_{r+1}, \dots, y_{2r} .

Let L be a term in A_1 , of total degree $d \ge g^2$ in the y_i . The power product of degree d in L is the product of a set of power products taken from the $A^{(j)}$. If M is any of the latter power products, the total degree of M is at least g, hence at least g/r times the degree of M in any one of y_{r+1}, \dots, y_{2r} . Thus, the degree of L in any one of y_{r+1}, \dots, y_{2r} is not more than (rd)/g.

5. The second substitution. Differentiating A_1 , we consider the $A_1^{(j)}$ for $j=0, \dots, r$. No $A_1^{(j)}$ is of degree exceeding r in any y_i with $2r < i \le 3r$. Let L, of some total degree d, be a term in some $A_1^{(j)}$. Then L, since it is derived from a term of total degree d in A_1 , is of degree not exceeding $rdg^{-1}+r$ in any y_i with $r < i \le 2r$. As $d \ge g^2$, we have $rdg^{-1}+r \le rd(g^{-1}+g^{-2})$.

In the second member of (2), we replace each y_i by $A_1^{(i)}$. We find a relation $y \equiv A_2$, (F), with each term of A_2 of total degree at least g^3 . If L is a term in A_2 , of some total degree d, the degree of L in any y_i with $2r < i \le 3r$ does not exceed rdg^{-2} and the degree of L in any y_i with $r < i \le 2r$ does not exceed $rd(g^{-1} + g^{-2})$.

6. Continuation. In the third step, we substitute the $A_2^{(j)}$ into (2). After t steps, we have $y \equiv A_t$, (F), with each term in A_t of total degree at least g^{t+1} . Let L be a term in A_t of some total degree d. Let j be any positive integer not greater than t. Then the degree of L in any y_i with $jr < i \le (j+1)r$ does not exceed

$$rd(g^{-j} + g^{-j-1} + \cdots + g^{-t}) < 2rdg^{-j}.$$

7. Completion of proof. Let t of §6 be the square of a positive integer s. The total degree of L of §6 in the y_i with i > sr is no more than

$$2rd(rg^{-s} + \cdots + rg^{-t}) < 4r^2dg^{-s}.$$

Let *s* be so great that

$$4r^2g^{-s} < 1/2$$
.

Then the total degree of L in the y_i with $i \le sr$ is at least d/2. Thus, for some particular y_i with $i \le sr$, the degree of L in y_i is at least

^{*} $A^{(0)} = A$.

(3)
$$\frac{d}{2(rs+1)} \ge \frac{g^{s+1}}{2(rs+1)}.$$

We refer now to §2. If s is large, the second member of (3), if $i \le sr$, will exceed $2^{i}p$. This completes the proof of our theorem.

8. **Higher values of** p. It is not an unnatural conjecture that, if Σ contains a form $y^n + A$ with every term in A of degree greater than n, p of §1 may be taken as n. We give an example to show that the least p may exceed n.

Let Σ be the ideal generated by $F = y^3 + y_1^4$. If Σ_1 contained y^3 , there would exist a relation

(4)
$$y^3(1-H) = MF + M_1F' + \cdots + M_rF^{(r)},$$

with H vanishing for y=0. For the second member of (4) to yield the term y^3 which the first member contains, it would be necessary for M to have unity as one of its terms. Then MF would have y_1^4 as a term. Equating terms of degree 4 and weight 4 for both sides of (4), we would find $y_1^4 \equiv 0$, (y^3) , which is readily shown to be false.

9. A generalization. Let F and A be two forms in y_1, \dots, y_n , both of class n and algebraically irreducible. Suppose that the general solution \mathfrak{M} of A is contained in the manifold of F and is essential in that manifold. It is known how the essentiality of \mathfrak{M} is reflected in the structure of F.* Suppose now that S^tF , where S^t is as in the indicated theorem of structure, has a term C_jA . It can be shown, by the method of §§2-7 above, that there exists a relation $AH \equiv 0$, (F), where H does not hold \mathfrak{M} .

COLUMBIA UNIVERSITY

^{*} American Journal of Mathematics, vol. 60 (1938), p. 14.