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oo = lim sup (2 log n)/v,.
n—ro0

In order that ¢y =0, in which case (3.1) will converge in the right half
of the s-plane, it is sufficient that », tend to infinity faster than log #.
The argument used to complete the proof of Theorem 2 is the same
as the one used above in connection with Theorem 1.

Notice that if {,41—».} is not a null sequence, then », tends to
infinity faster than log #. This eliminates the extra restriction used
in the proof of Theorem 1.
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ON CERTAIN IDEALS OF DIFFERENTIAL POLYNOMIALS*
J. F. RITT AND E. R. KOLCHIN

Introduction. Let 2 be an ideal of differential polynomials in the
unknowns 1, - - -, ¥,- If the manifold of 2 is composed of s mani-
folds My, - - -, M, not necessarily irreducible, none of which has a
solution in common with any other, 2 has a unique representation
as the product of s ideals Zy, - - -, Z, whose manifolds are, respec-
tively, the M. 1

Most of the present note is concerned with decompositions of the
foregoing type and considers the case in which one of the I, say Iy,
is composed of a single solution, that is, of a set of functions
Y1, -+, ¥ contained in the underlying field. We shall examine, for
this special case, the structure of the ideal Z;. Details will be given
only for the case of a single unknown; the extensions to several un-
knowns are too obvious to require explicit mention. It will suffice,
furthermore, to treat the case in which 9% is composed of the solution
y=0.

In §9, we consider a problem closely related to the theorem of de-
composition stated above.

1. On the structure of Z;,. Let = be an ideal of forms in the un-
known y. Let y=0 be an essential irreducible manifold for Z. Let 2
be the product of Z; and Z; where 2; has y=0 as its manifold and Z,
does not admit y=0 as a solution. Let p be a positive integer such
that y? is contained in Z;.

* Presented to the Society, September 8, 1939.

t Proceedings of the National Academy of Sciences, vol. 25 (1939), p. 90. Product
is defined in the expected way. That the intersection of the = is identical with their
product follows immediately from the fact that the Z;, considered as algebraic ideals,
are paarweise teilerfremd, See van der Waerden, Moderne Algebra, vol. 2, p. 46.
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We shall prove that 2, is the ideal generated by Z and y», that is, the
intersection of all ideals containing 2 and y?.

ProorF. Obviously Z; contains the ideal generated as above. What
has to be proved is the converse of this fact. Let G be any form in Z;.
2, contains a form 1—H, where H vanishes for y=0. Then 2 con-
tains G(1 —H) and, therefore, G(1 —H% where ¢ is any positive in-
teger. Now, if ¢ is large,

(1 Hi =0, (y7).

Let ¢ be fixed at a value large enough for (1) to hold, and let
M =G —H?. Then G= M, (y?), and this establishes the theorem.

2. Condition for p to be unity. We are going to examine now the
case in which 2 contains a form of the type y+4, where 4, consid-
ered as a polynomial in the y;, has no term of degree less than 2.
Ideals of this type form a natural and interesting class; a very special
example is the ideal generated by y2 —4y. We are going to prove that
the p of §1 may be taken as unity. That is, Z; consists of all forms
which vanish for y=0.

What we have to prove, of course, is that Z; contains y. Our pro-
cedure will be as follows. For some p, y? is in Z;. Then, for any ¢,

2'7isin Z;. Let F=y+A be the form mentioned in the statement of
our theorem. Then

(2) y=— A, (F).

We shall subject (2) to an iterative process and derive a relation
y=K, (F), where every term of K contains some y2? as a factor,
7 depending on the term. This will establish the theorem.

3. Bound on degrees. Let a form P in y be of degree g in some 7,,
7=0. We shall show that P’, the derivative of P, has a degree in y;
which does not exceed g+1. For let L, any term of P, be divisible
by y;2 with ¢ =g, and by no higher power of y. Let L=y,2M. We have,
indicating first derivatives by an accent,

L' = gy ymM + ysM'.
M’ consists of a set of terms, one of which will be divisible by the

first power of y; if M involves y;_;. This is enough to prove our state-
ment.

4. The first substitution. Let us suppose that, in addition to (2),
we have a second relation y=B, (F). In the second member of (2),
let y be replaced by B and each y; by the jth derivative of B. Then
—A goes over into a form C. It is easy to see that y=C, (F).
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Let 7 be a positive integer which is not less than the order of 4 in ¥.
Let g be an integer, exceeding unity, such that each term of 4 is of
total degree not less than g in y, - - -, 4. In 4, we replace y; by
—AWD, j=0,- .-, r, superscripts indicating differentiation.* Then
—A goes over into a form A; and y=A4,, (F). Each term in A4, is of
total degree not less than g2in y, - - -, y2,. By §3, the A, j<7, are of
degree not greater than 7 in any one of the letters y,41, - - - , Yer.

Let L be a term in 44, of total degree d =g? in the y;. The power
product of degree d in L is the product of a set of power products
taken from the A, If M is any of the latter power products, the
total degree of M is at least g, hence at least g/7 times the degree of M/
in any one of ¥,41, - - -, ¥2. Thus, the degree of L in any one of
Yri1, © * ¢, Y2r is not more than (rd)/g.

5. The second substitution. Differentiating A:, we consider the
AP for j=0, - - -, r. No A9 is of degree exceeding 7 in any y; with
2r <1< 3r. Let L, of some total degree d, be a term in some 4;(?. Then
L, since it is derived from a term of total degree d in A4, is of degree
not exceeding rdg—'+7 in any y; with r<¢=27. As d=g? we have
rdg'+r=<rd(g—14g72).

In the second member of (2), we replace each y; by 4:¢?. We find a
relation y=A4., (F), with each term of A4, of total degree at least g3. If
Lisatermin 4,, of some total degree d, the degree of L in any y; with
2r <4 =3r does not exceed rdg—? and the degree of L in any y; with
r <4 =2r does not exceed rd(g~'+g72).

6. Continuation. In the third step, we substitute the 4,@ into (2).
After ¢ steps, we have y=A,, (F), with each term in 4 of total degree
at least gtt1, Let L be a term in 4, of some total degree d. Let j be any
positive integer not greater than . Then the degree of L in any y;
with jr <¢ = (j+1)r does not exceed

rd(g=i+ g 14 - - 4 g7h) < 2rdgi.

7. Completion of proof. Let ¢ of §6 be the square of a positive in-
teger s. The total degree of L of §6 in the y; with 4> s7 is no more than
2rd(rg=s + - - - 4+ rg™t) < 4ridg.

Let s be so great that

4r2g— <1/2.
Then the total degree of L in the y; with 2 <sr is at least d/2. Thus,
for some particular y; with 7 <sr, the degree of L in v; is at least

*AO=4,
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We refer now to §2. If s is large, the second member of (3), if 2 Zs7,
will exceed 2%p. This completes the proof of our theorem.

3)

8. Higher values of . It is not an unnatural conjecture that, if 2
contains a form y»+ A4 with every term in 4 of degree greater than #,
p of §1 may be taken as n. We give an example to show that the least
» may exceed #.

Let 2 be the ideal generated by F=y3+y*. If Z; contained y3, there
would exist a relation

@) y(1 — H) = MF + MiF' + - - - + M,F®,

with H vanishing for y =0. For the second member of (4) to yield the
term y® which the first member contains, it would be necessary for M
to have unity as one of its terms. Then M F would have y as a term.
Equating terms of degree 4 and weight 4 for both sides of (4), we
would find y# =0, (¥?), which is readily shown to be false.

9. A generalization. Let F and 4 be two forms in yy, - - -, ¥, both
of class # and algebraically irreducible. Suppose that the general solu-
tion M of 4 is contained in the manifold of F and is essential in that
manifold. It is known how the essentiality of I is reflected in the
structure of F.* Suppose now that StF, where Stis as in the indicated
theorem of structure, has a term C;4. It can be shown, by the method
of §8§2-7 above, that there exists a relation AH=0, (F), where H does
not hold IMN.
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* American Journal of Mathematics, vol. 60 (1938), p. 14.



