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PERIODIC HOMEOMORPHISMS* 

DICK WICK HALLf 

A single-valued continuous transformation T(M) = M is said to be 
pointwise periodic% provided that for every point x in M there exists 
an integer Nx such that TNx(x)=x. The smallest such integer Nx 

(greater than zero) is called the period of x under T. For each point 
x of M the finite subset of M consisting of all the images of x under T 
is called the orbit of x under T. 

In most of the familiar examples concerned with this type of trans­
formation the limit § of every convergent sequence of orbits consists 
of a set of points all having the same period. In fact the first example 
in which this is not the case has recently been given by G. E. 
Schweigert and the author. || In this paper we combine this example 
with one found by Ralph Phillips and W. L. Ayres ̂ [ and then gen­
eralize the result to obtain what is probably the first example in which 
the space is a locally connected continuum while at the same time 
there exists a sequence of orbits converging to a set L containing 
points of arbitrary preassigned periods. 

We let fi = l and r2, rz, • • • be the arbitrarily chosen periods for 
points in L. Then we construct a locally connected continuum M in 
four-dimensional euclidean (x, y, z, w) space and define a pointwise 
periodic homeomorphism T(M) = M with the following properties: 

(a) There exists a convergent sequence of orbits (G») under T hav­
ing a limit set L which for every i — 1, 2, • • • contains a free arc every 
interior point of which has period exactly rt\ 

(b) The closure of every component of M — L is a 2-cell. 

* Presented to the Society, November 26, 1938, under the title On pointwise 
periodic homeomorphisms. 

f National Research Fellow in Mathematics. 
X See Deane Montgomery, Pointwise periodic homeomorphisms, American Journal 

of Mathematics, vol. 59 (1937), pp. 118-120. 
§ The limit superior of a sequence of point sets consists of all points every neigh­

borhood of which contains points from infinitely many sets of the sequence. The limit 
inferior consists of all points every neighborhood of which contains points from all 
but at most a finite number of sets of the sequence. If these two sets are identical, 
their common value is known as the limit of the sequence. 

|| See D. W. Hall and G. E. Schweigert, Duke Mathematical Journal, vol. 4 
(1938), p. 723. 

IT See a forthcoming article by W. L. Ayres in Fundamenta Mathematicae. The 
example of Phillips and Ayres shows that a pointwise periodic homeomorphism need 
not be almost periodic even though the space is a locally connected continuum. 

882 



POINTWISE PERIODIC HOMEOMORPHISMS 883 

We begin by constructing the limit set L in the (x, y) plane, and 
do this by means of polar coordinates (r, 0). In this plane let C be 
the unit circle r = l, and define an infinite sequence of points (a») 
as follows: a 0 = ( l , 0), a<=( l , [l + (i — l)/i]w), (iVO). Evidently, 
lim di = ao. 

If the sequence (/%•), ( i = l , 2, • • • ), contains only a finite number 
of terms, we may repeat the last term infinitely many times. Hence 
we lose no generality in assuming this sequence to be infinite. Let A\ 
be the arc of C from a»_i to a% in the counterclockwise direction. For 
each i greater than one let A], A\, A\, • • , Arf~x be rt- —1 inde­
pendent arcs (numbered inwardly) spanning* C between the points a%-\ 
and ai. Let these arcs all lie in the sector of the circle C determined 
by the rays joining the origin to a»-__i and ai and the portion of the 
circle swept out by the radius vector as it moves from a*_i to a» with 
increasing 6. Construct these arcs in such a way that the length of A{ 
is less than twice the length of A\ for all 7 =>•• — !. Also arrange that 
no radius of C meets any A{ in more than one point. We may then 
define A™ for all positive integers n by reducing the superscript w, 
modulo r». We define the limit set L by the equation 

00 00 

L = EE4. 
i = l n=l 

For every positive integer i define 
i 

fii = X) 2*-'r,-. 

We shall now construct an infinite sequence of point sets Pi having 
the following properties: (i) Pi consists of exactly »»• points, for each i; 
(ii) Pi lies wholly in the plane 5»-: z = l/i, w = 0; (iii) Pi converges to 
the set L in the plane 2 = 0, w = 0. 

Let Ri, (i = 0, 1, 2, • • • ), denote the ray joining the origin to 
the point a», for each i. For i fixed consider any two rays Rj-\ 
and Rj, (j = i)- Between these rays, but not including them, con­
struct 2{~J' rays equally spaced in the sector and let them be named 
Kj, K*, Xf, • • • , Kf ' in the counterclockwise order in which they 
occur. The ray KJ will intersect L in exactly r3- points, one on each 
of the arcs A*Jf (̂  = 0, 1, 2, • • • , r — l ) . We arrange all these points 
of intersection, for 7 = 1, 2, • • • , i, in a linear array wh w2l • • • , wni, 
where wt is the point of intersection of the arc A9} and the ray K) for 
the value 

* An arc axb is said to span a point set M provided (axb)M—a-\-b. 
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3-1 

t = n+l + (s- l)ry + J2 2*-mrm. 

It is easily seen that this orders the points first, according to which 
sector of the circle they are in, second, according to which ray they 
are on, and third, according to the free arc of L which contains them. 
Let wt have the coordinates (xt, yt, 0, 0). Let p\ be the point with 
coordinates (xt, yt, 1/i, 0), and define 

ni 

It follows easily that the sequence of point sets thus constructed satis­
fies (i), (ii), and (iii). 

We have now reached the final stage of the construction which will 
be made by adding to L an infinite sequence of 2-cells, where each 
2-cell is considered as the homeomorph of a triangle and its interior. 
I t is thus meaningful to speak of the sides and vertices of a 2-cell. 
Every 2-cell will have one of its sides in L; this side will be called the 
base of the 2-cell. The other vertex of the 2-cell will lie in one of the 
planes Si and will be referred to as the apex of the 2-cell. By the 
altitude we mean the maximum distance from the base to any point 
of the 2-cell. 

For every integer i we shall construct a set of ni 2-cells G\y G\, 
Git • • • , GJ*. The bases of the G\ will be taken as the sets 

Bi= t,Ai. 

The apexes b{ will be chosen to satisfy the following conditions: 
(a) all the b{ are distinct; (b) for each (i, j), G{Si = b{\ (c) p(&{, p{) 
<l/i. We finally require that for every e > 0 there exist at most a 
finite number of G{ of altitude greater than e, and that the product 
of any of the 2-cells, which are not identical, lies in L. All of these 
conditions are easily satisfied in our four-dimensional space. 

Our space M is now defined to be 

M = L+JtÈGÎ 

I t is easily seen that M is a locally connected continuum. 
We must now define the transformation T(M) = M. To do this we 

define T(A{) =A{+1 as a homeomorphism having the end points of 
A{ as fixed points. This defines Ton L. For each G{ let r(oJ)=G<+ 1 
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(where the superscript is reduced, modulo n^ if necessary) be a ho-
meomorphism agreeing with T on L and sending b{ into &*+1 (with 
the same convention on the superscripts). This defines T for every p 
of M. I t is evident that T(M) = M is a pointwise periodic homeo-
morphism. 

If we now define 
n{ 

Gi = X) hi, 
; - l 

we see that each Gi is an orbit under Tf and conditions (a) and (b) 
of the theorem are satisfied. The proof is thus complete. 

UNIVERSITY OF PENNSYLVANIA AND 
UNIVERSITY OF VIRGINIA 

AN ENUMERATION OF LOGICAL FUNCTIONS 

WILLIAM WERNICK 

In a logical calculus of m values, abbreviated by Lm, we may deal 
with functions of n variables. A particular function is defined in this 
calculus if we assign a constant value, which may be any arbitrary 
one of the m possible values in Lm, as the value of that function for 
a particular argument. I t is the purpose of this note to enumerate, 
among all functions of n variables in Lm : those which depend on all n 
variables in the argument; those which depend on just (» —1) of the 
variables in the argument, being independent of one of them ; and so 
on ; finally those which are completely independent of all the variables 
in the argument. 

Since each variable in the argument may assume values from 
1, • • • , m, independently, there are mn possible arguments, and since 
to each argument we may assign independently, as a functional value, 
any of the m values 1, • • • , m} there are in all mmTl possible functions 
of n variables. 

Let Vn be the total number of all functions of n variables in Lm. 
Then we have from the above 

(1) Vn = mm\ 

Let Unk be the number of functions of n variables which depend on 
exactly k of them. (It is this expression for which we are seeking an 
explicit evaluation.) Since k variables may be selected from n of them 
in just Cn,k ways, we have the relation: 

(2) Unk = Cn,kUkk* 


