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THE REPRESENTATION OF BOOLEAN ALGEBRAS 

M. H. STONE 

1. Introduction. In this brief address I shall set myself a twofold 
aim: to review the theory of Boolean algebras, as we understand it 
today, and to sketch certain historical phases of its development. Al­
though I am in no sense prepared to offer the fruits of painstaking 
historical research, I believe that by a few pertinent historical ob­
servations I shall be able to bring out the underlying evolutionary 
pattern, which, in fact, is a quite familiar one. 

2. Motivation and essential features of the theory. More than 
ninety years have passed since the publication of George Boole's 
first contribution towards an algebra of logic [5].* While Boole was 
by no means the first to at tempt a symbolic method in logic (among 
his precursors we find Leibniz, Jacques and Jean Bernoulli, J. H. 
Lambert, and Gergonne [ó]) it is a just and proper tribute to his 
genius that we commonly call this algebra by his name. I believe it 
would be accurate to say that of the many books, memoirs, notes, 
and reviews (more than one hundred seventy-five in number [6]) 
which deal with Boolean algebras the great majority draw their in­
spiration directly or indirectly from the work of Boole. The orienta­
tion of these studies toward symbolic logic is apparent in their 
preoccupation with algorithms, identities, and equations, or with the 
logical interrelations of the formal properties of the various Boolean 
operations. Recently there has emerged a different tendency, namely, 
to view Boolean algebras structurally, as organic systems, rather 
than algorithmically. Although this tendency might naturally have 
been expected to take its origin either in the rich experience of alge­
braists or in the needs of mathematicians concerned with the calculus 
of classes, it sprang, in fact, from quite different sources as a recogniz­
able, if somewhat remote, consequence of the work of Hubert. The 
most intensive exploitation of this new tendency is due to Tarski and 
myself [28]-[39]. Tarski's theory of deductive systems, which is but 
one illustration of the way in which logic has been enriched by the 
sort of metamathematical inquiry first seriously attempted by Hu­
bert, deals with systems of propositions which are complete with re­
spect to logical inference; from a mathematical point of view, it is 
therefore a theory of the relations between special subalgebras of a 

* References by number are to the bibliography at the end. 
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Boolean algebra. My own investigations are a systematic attempt to 
discuss the structure of Boolean algebras by the methods which have 
thrown so much light on far deeper algebraic problems. The need for 
investigations of this character was suggested to me by the theory of 
operator-rings in Hubert space: there, as in other rings and linear 
algebras, the "spectral" representation as a "direct sum" of irreduci-
ible subrings reposes in essence upon the construction of an abstract 
Boolean algebra; and this construction, trivial for rings with strong 
chain conditions, is not trivial in the case of operator-rings. 

Boolean algebras may be thought of as arising by abstraction from 
the familiar algebras of classes and point sets. The theory of Boolean 
algebras thus bears to the theory of combinations the same relation 
as the theory of abstract groups to the theory of permutations. Ac­
cordingly it is natural, even inevitable, that we should ask whether 
every abstract Boolean algebra corresponds isomorphically to some 
concrete algebra of classes or combinations, just as we ask whether 
every abstract group corresponds in like fashion to some concrete 
group of permutations. For the case of finite Boolean algebras, the 
answer has long been known ( [12], p. 309) and is affirmative; the ar­
gument justifying it is almost as trivial as that which resolves the 
analogous question for all abstract groups. For the general case, the 
answer is not so easily obtained but is still affirmative. In fact, 
the theory of representations not only establishes the existence of an 
algebra of classes corresponding isomorphically to a given Boolean 
algebra, but even accomplishes the determination of all algebras of 
classes isomorphic or homomorphic to that algebra ([32], pp. 106-
111). On this occasion, I wish to emphasize especially the complete­
ness of the theory of representations, inasmuch as a few reviews and 
abstracts of the theory [43] have not dwelt upon this feature. The es­
sential mathematical steps in the development of the representation 
theory are easily summarized. They are first, the identification of 
Boolean algebras as Boolean rings with unit, where by the term 
"Boolean ring" is meant any ring in which every element is idem-
potent;* second, the recognition of the representation problem as a 
special instance of the problem of imbedding a ring in a direct sum 
of rings of given type, and the consequent reduction of the problem 
to that of finding the prime ideals in a given Boolean ring; and third, 
the inductive construction of the desired prime ideals. I proceed to 
discuss these steps in greater detail. 

* Boolean rings without unit correspond likewise to certain simple generalizations 
of Boolean algebras [31 ], [32]. 
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3. Boolean algebras as rings. In the mathematical literature one 
frequently comes upon evidences of an opinion that Boolean algebras 
are in some sense fundamentally different from the algebras com­
monly met in dealing with families of real or complex numbers and 
their generalizations. Thus Whitehead [41 ] sets Boolean algebras 
apart as instances of "algebras of nonnumerical genus"; and quite 
recently Bell follows him, writing in the introductory remarks of a 
paper on Boolean algebras that "this is probably the first attempt to 
construct an arithmetic for an algebra of nonnumerical genus" [ l ] .* 
The foundation for this opinion lies in the laws a+a=a and aa — a 
obeyed by the logical sum and product, and therefore vanishes unless 
one insists upon comparing these Boolean operations with arithmetic 
sum and product, respectively. Now there is a natural preference for 
these operations only when Boolean algebras are regarded as special 
instances of partially ordered sets or lattices; their "nonarithmetical" 
character is indeed sufficient reason for giving preference to others, 
if any more suitable ones can be found, when Boolean algebras are 
to be compared with common algebras. The fact is that, considered 
in terms of the appropriate Boolean operations, the Boolean algebras 
are precisely those Boolean rings which possess units [30], [32]: one 
may take the logical product as ring product, and the operation of 
forming the "symmetric difference" or "complete disjunction" as ring 
addition. In the algebra of classes, the product AB is the class of ele­
ments common to A and B, while the symmetric difference A +B is 
the class of elements in A or in B but not both, familiar to topologists 
as the sum (mod 2) of the classes A and B. The essential formal prop­
erties of these preferred operations have long been known; they can 
be found scattered through the work of Schroeder [27], Daniell [7], 
Bernstein [2], Gégalkine [9], and presumably others, f These proper­
ties suffice to show that every Boolean algebra is a Boolean ring with 
unit, a conclusion drawn explicitly but in slightly different terms by 
Orrin Frink in 1928 [8]. Frink showed further that, if the logical 

* Indeed Bell, for reasons I do not understand, explicitly rejects a possibility 
which could have led him to the point of view described below; and Hurwitz [13] 
followed him in this respect. The correct determination of all congruences in a Boolean 
algebra I believe to be that given in [32], p. 81. 

f But Rinow's view [14] that Boole and C. S. Peirce were familiar with the proper­
ties of these operations is not adequately supported by his citations, it seems to me. 
Boole, for instance, rejects as simple a combination as l + # ; and Peirce's "arithmetic 
sum" does not involve reduction (mod 2). In fact, while Peirce obtains the ring prop­
erties for "arithmetic sum" and logical product, the resulting ring has the formal 
properties of the ring of functions (over an abstract set) assuming each a finite num­
ber of the values 0, ± 1 , ± 2 , • • • . 
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product be taken a priori as the desired ring product, then the only 
Boolean operation which can be employed as ring addition is the 
operation of forming the symmetric difference. None of these authors, 
however, took the final and decisive step of showing that, conversely, 
every Boolean ring with unit is a Boolean algebra [30 ], [32]. 

In the present connection it is perhaps interesting to note a few 
simple properties of Boolean rings, and hence of Boolean algebras, 
in order to emphasize the relations with ordinary algebra. A Boolean 
ring is a domain of integrity (that is, is free from divisors of zero) 
if and only if it is isomorphic to the field F2 of integers (mod 2) [2], 
[32].* Every Boolean ring satisfies the regularity condition of von 
Neumann [24]: the equation axa—a always has a solution, namely 
x = a. Finally, by virtue of the easily established law 2 a = # + a = 0 , 
every Boolean ring is a linear associative algebra over the field F2 [8]. 

4. Reduction of the representation problem. Only recently, McCoy 
and Montgomery [22] have stated in explicit terms the fundamental 
principle upon which the representation theory is based. I t is this: 
A necessary and sufficient condition that a ring R be isomorphic to a 
subring of a direct sum (finite or infinite) of rings K is that for every 
a ?*0 in R there exist a homomorphism h of R into a subring of K with 
h(a)^0. In order to appreciate the immediate relevance of this 
principle, let us observe that every Boolean ring of classes is iso­
morphic to a subring of a direct sum of the indicated kind. We have 
merely to recall the familiar reckoning with characteristic functions, 
as was done for similar purposes by H. Whitney [42]. In a class E, 
the characteristic function CJ>A of a subclass A, equal to 1 on A and 
to 0 elsewhere, satisfies the following relations: 

<j>AB — <t>A<l>B, <j>A+B — <t>A + <t>B ( m o d 2 ) , 

<j>A = 0 if and only if A F= 0 (is void). 

Evidently it is convenient to treat the values of <f>A as numbers of the 
field F2. Now these relations show that the correspondence A-^4>A 
carries the various Boolean rings of subclasses of E isomorphically 
into Boolean rings of characteristic functions; in particular, it carries 
the ring of all subclasses of E into the ring of all functions defined on 
E with values in F2, a ring which is precisely the direct sum of fields 
F2 with one summand corresponding to each element of E. Accord­
ingly, every Boolean ring of classes is isomorphic to a subring of a direct 
sum of fields F2. The principle of McCoy and Montgomery therefore 

* This field consists of two elements, 0 and 1, with the rules of operation 
0 -0 = 0 -1 = 1 -0 = 0+0 = 1+1 = 0and 1-1 = 1+0 = 0+1 = 1. 
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reduces the representation problem for an abstract Boolean ring to 
the narrower problem of determining the homomorphisms of that 
ring into the field F2. A simple algebraic discussion shows finally that 
the study of these homomorphisms is equivalent to the study of the 
prime ideals in the given ring ([32], pp. 85-86). 

I t is interesting to note that prior to the enunciation of the prin­
ciple of McCoy and Montgomery a number of particular instances 
had appeared in the literature. Köthe [ lS], [16], and Prüfer [26] had 
used this principle without explicit statement, as I had in my own 
work on Boolean algebras. No doubt further instances could be found 
through a careful search of the literature. As McCoy and Mont­
gomery point out, the principle may be more broadly formulated so 
as to apply to the most general kind of algebra and even to branches 
of mathematics outside algebra; for example, a similar criterion can 
be stated for the homeomorphism of a given topological space with a 
subspace of a prescribed Cartesian product. It is clear, I think, that 
McCoy and Montgomery are entitled to full credit for recognizing 
the great importance of this simple principle and for formulating it 
in general terms. 

5. The construction of prime ideals. The representation theory for 
Boolean rings, as we have seen, rests ultimately upon the construc­
tion of prime ideals or, equivalently, of homomorphisms into the 
field F2. I t is interesting and instructive to test the significance of the 
construction by reference to one or two concrete interpretations. In 
the case of an algebra of classes, the object of the construction is to 
assign to each class A a real number m (A) so that 

m(A) = 0 or 1, m{E) = 1, 

m{AB) = tn(A)m(B), m(A + B) = m(A) + m(B) (mod 2), 

or, equivalently, so that 

m{A) = 0 or 1, m{E) = 1, m{0) = 0, 

m(A u B) + m{AB) = m{A) + rn(B). 

In other words, we wish to construct a two-valued additive measure 
defined for the classes in the given Boolean algebra. In order to ex­
clude trivial cases we may require further that for every one-element 
class A the equation m {A) = 0 be satisfied. In the case of an algebra of 
propositions, as envisaged by Boole and more fully developed by his 
successors, the object of the construction is to assign to each proposi­
tion A a number t(A) subject to requirements like those given above 
for m. I t is easily verified that these requirements compel t{A) to 
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play the role of a truth-value. If we designate A as true or false ac­
cording as t(A) = 1 or t(A) = 0, the formal rules of logic are obeyed. 
These two interpretations strongly suggest that the desired construc­
tion can in general be effected only by an appeal to inductive meth­
ods, based on mathematical (or complete) induction in the case of 
countably infinite Boolean rings and on transfinite induction in the 
higher cases. Several inductive constructions of prime ideals in ab­
stract Boolean rings have been given by various writers ; all are com­
paratively simple and straightforward. I believe that the first of these 
constructions are the ones I obtained in the autumn of 1932 and later 
published ([28] and [32], pp. 100-104), though Garrett Birkhoff in­
dependently and at about the same time discovered a procedure 
which applies also to the case of distributive lattices ([3], pp. 458-
459). Further discussions have been given by von Neumann and 
Stone [25], and by McCoy and Montgomery [22]. 

I t should be carefully observed, however, that certain of these con­
structions may be regarded as contained in somewhat earlier results 
established by Krull, Lindenbaum, Tarski, and Ulam. Ulam [40] and 
Tarski [36] independently constructed non-trivial solutions of the 
problem of measure indicated above; and their methods apply with­
out essential modification to the theory of abstract Boolean rings. 
Lindenbaum [19] solved the analogous problem for truth-values in 
classical logic. In certain of his papers on the general theory of rings, 
Krull obtained constructions which are readily specialized to the case 
which concerns us here. For example, he proved the following result 
( [18], p. 732) : In a commutative ring R let S be a multiplicative sub­
system (that is, with a and b the system 5 also contains ab) which 
does not contain 0; then there exists a prime ideal which does not 
contain S. The proof is exceedingly simple. By transfinite induction 
one easily constructs a "maximal" ideal not containing 5, and one 
then shows, by an almost trivial argument, that this ideal must be 
prime. In the case of a Boolean ring we may take 5 as consisting of a 
single element a^O, since a-a=a. Some of Krull's results on absolute 
value rings can also be specialized to yield the desired construction, as 
I have pointed out elsewhere [30 ]. 

6. Summary of the representation theory. The representation the­
ory leads to the following results ([32], pp. 106-111). If (£ is the class 
of all prime ideals in a Boolean ring A and if S(a) is the class of all 
prime ideals not containing the element a, then the correspondence 
a—>@(a) defines an isomorphic representation of the ring A (that is, 
(g(ö6) =g(a)(g(6)f <8(a + 6) = <g(a)+ «(&), and @(a) is void if and only 
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if a = 0). Every algebra of classes homomorphic to A can then be ob­
tained from this representation by the suppression of fixed elements 
of (§ and the possible adjunction of superfluous elements. It is to be 
observed that the representation described here is a "maximal" one: 
the class (S which is the substratum of the representation can be en­
larged only by introducing superfluous elements ([32], pp. 106-111). 
Hence the following question is of some interest: How many elements 
of (S must be retained in order that the algebra resulting from the sup­
pression of all other elements be isomorphic to At Since every 
Boolean algebra can now be regarded as an algebra of classes, we 
may rephrase the question in somewhat more general terms: If A 
is a (reduced) algebra of subclasses of a class E and S is the class of 
all prime ideals in A, what relations hold between the cardinal num­
bers | E\, | A | , and | @| ? For the infinite case simple estimates show 
that 

| E\ rg | ; l | ^ | ( g | , \A\ g 2 1 " , | (S | è 2W. 

Under the hypothesis that NL+i = 2**«, there are only four possibili­
ties: 

(1) \E\ =\A\ = | < 8 | , 

(2) \E\ =\A\ < 2 W = | < g | , 

(3) | JE | < 21*1 = \A\| = | (g |, 

(4) | E\ < 21*1 = \A\ < 21̂ 1 = | (g | . 

The fourth set of relations always holds in the finite case; but even in 
the simplest infinite case, where |JE[ = N O , all four sets of relations 
can be realized by proper choices of the algebra A. 

7. Classification and ideal structure of Boolean rings. A problem 
which naturally arises in connection with the theory of Boolean rings 
is that of classification. In the finite case, a Boolean ring is completely 
determined by the number of its elements. In the infinite case, on the 
other hand, no such characterization in terms of simple invariants is 
possible. One can see this, for example, by noting the distinctions be­
tween algebras in which the formation of infinite unions or intersec­
tions is admitted with various qualifications. An abstract discussion 
of infinite unions leads at once to problems concerning ideal structure. 
If a is a nonvoid subclass of a Boolean ring A, the union of its ele­
ments may be defined as the element c for which the proposition 
"xc = c" is equivalent to the proposition "xa = a for every a in a"; or, 
equivalently, as the element c for which the proposition "c;y = 0" is 
equivalent to the proposition "ay = Q for every a in a." If we denote 
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by a' the class of all elements y such that ay = 0 for every a in a, 
then a' is an ideal and c is an element of the ideal ct"= (a') ' 3 a. I t is 
easily seen that a"' = ((a')') / r=ft' a n d that, in consequence, a and a" 
have a common sum c. Thus to require the existence of c is to require 
that the ideal a" be principal (with c as its generating element). We 
are thus led to study the algebra of ideals under the operations of 
forming ideal products and ideal sums and the operation ' introduced 
above, and to classify ideals according to their behavior under these 
operations (for example, I have called normal those ideals for which 
ct = ct"). An exhaustive study of this algebra [32], [34] permits us to 
distinguish a few special types of Boolean ring, but the results are, 
on the whole, meager. The most interesting are probably those which 
follow. It is possible to form arbitrary unions and intersections in a 
Boolean ring if and only if all its normal ideals are principal ([34], 
pp. 232-235). Any Boolean ring, by a simple construction on its nor­
mal ideals, can be imbedded in one for which arbitrary unions and 
intersections can be formed [20], [21 ], [32], [34]. A Boolean ring is 
isomorphic to the ring of all subclasses of some fixed class if and only 
if it admits the formation of arbitrary unions and intersections and, 
in addition, obeys the general form of the distributive law for infinite 
unions and intersections [34], [38]. 

The algebra of ideals in a Boolean ring has interesting relations to 
logic. In the classical logic of propositions, the ideals correspond to 
the deductive systems of Tarski [37], [39]. The theory outlined here 
thus includes the central features of a metamathematical discussion 
of deductive systems. On the other hand, the formal rules of the alge­
bra are closely related to the Brouwer logic as elaborated by Heyting 
[ l l ] . This connection was pointed out by Tarski ([39], p. 514) and 
by me ([32], p. 66), Certain aspects of this relationship are touched 
on in the contributions of Gödel [lO], Kolmogorofï [17], and Tarski 
([39], p. 514). 

8. Topological considerations. A much deeper insight into the 
structure of Boolean rings is made possible by the introduction of 
topological concepts. A cardinal principle of modern mathematical 
research may be stated as a maxim: "One must always topologize." 
With this principle in mind, I attacked the representation a—>(S(a) 
described above: each class (§(a) was taken as a neighborhood of 
every one of its elements, the class (§ thus being converted into a 
topological space. I t was found that @ becomes a totally disconnected 
bicompact Hausdorff space with the sets @(a) as its open-and-closed 
sets; and that every totally disconnected bicompact Hausdorff space 
arises in precisely this way from a Boolean ring [29], [33 ]. The theory 
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of Boolean rings is thus seen to be equivalent to the theory of a spe­
cial kind of topological space. The difficulty of classifying infinite 
Boolean algebras now emerges in its proper light: even in the case 
of countably infinite Boolean algebras one is faced with the problem 
of finding invariants of zero-dimensional compact metric spaces (that 
is, closed subsets of the Cantor discontinuum). Although we lack a 
complete set of invariants in this much-studied case, we do have suffi­
cient information to obtain a number of interesting results about de­
ductive systems, as has recently been shown by Mostowski [23]. 

9. Distributive lattices. In closing, I wish to mention briefly the 
generalization from Boolean algebras to distributive lattices. While 
the methods and results of the theory of Boolean algebras can be ex­
tended, with suitable modifications, to the case of distributive lat­
tices, the direct connection with the theory of rings is lost. For this 
reason I find that a result of MacNeille, proved at my suggestion, 
provides the most satisfactory approach to the theory of distribu­
tive lattices: every such lattice can be imbedded in an essentially 
unique "minimal" Boolean algebra by a purely algebraic construction 
[20], [21]. The relation between distributive lattices and Boolean 
rings is in this respect analogous to that between domains of integrity 
(commutative rings without divisors of zero) and fields. Neverthe­
less, the direct attack has many points of interest and should not be 
ignored in a systematic survey. In addition to MacNeille's discussion 
cited above, I may mention papers of Garrett Birkhoff [3], [4] and 
myself [35].* 
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