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points, into the edge xy of B. Then T is an interior transformation. 
In fact T is a local homeomorphism which is 2 to 1. 

Since A is a planar graph, whereas B is non-planar (B is, in fact, one 
of the two well known Kuratowski primitive skew curves), clearly A 
contains no subset homeomorphic with B. Incidentally this example 
shows that planarity is not an interior property (that is, it is not in­
variant under interior transformations). 
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This paper concerns only magic squares of order four, and all state­
ments of the paper are to be construed as applying only to magic 
squares of order four. 

One says that 
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is a diabolic (or pan-diagonal or Nasik) magic square if a, & , • • • , p 
are 1, 2, • • - , 16 in some order, and each row, column, and diagonal 
adds up to 34. This is to include broken diagonals such as i} ƒ, c, p, 
or c, h, i, n. A diabolic magic square clearly remains diabolic if sub­
jected to the following transformations: 

A. Reflection about the a, / , k, p diagonal. 
B. Rotation through 90° counter-clockwise. 
C. Putting the first column last. 
D. Putting the first row last. 

For many purposes it is convenient to consider a diabolic magic 

* Presented to the Society, December 30, 1937. 
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square as mapped on a torus. That is, the square is bent and stretched 
until the top and bottom edges coincide and the right and left edges 
coincide. Then a diagonal like b, g, /, m is continuous and not broken. 

THEOREM 1. The four elements of any square of order two of a diabolic 
magic square of order f our mapped on a torus add up to 34. 

This includes squares like a, d, m, p or e, hf i, L 
PROOF. Add together the two main diagonals and the second and 

third rows and subtract the first and fourth columns. This gives 
f+g+j+k = 34. By use of transformations C and D, this proof can be 
applied to any square of order two. 

THEOREM 2. If a diabolic magic square of order four be mapped on a 
torusf then the sum of any element and the element which is two distant 
from it along a diagonal is 17. 

Note that if one starts at any element and moves two elements 
along any diagonal, one always stops at the same element regardless 
of the direction of the diagonal. Two elements so situated will here be 
called antipodal. 

PROOF. Add together the first and the third rows, then add the 
first and third columns, and the diagonals a, ƒ, ky p and a, n,k,h\ and 
subtract the diagonals e, b, 0, /; i, ƒ, ci, p\ m,j, g, d\ and i, n, c, h. This 
gives a + k = 17. By use of transformations C and D, this proof can be 
applied to any pair of antipodal elements. 

By use of these two theorems, one can readily see that a diabolic 
magic square remains diabolic if subjected to the following transfor­
mation : 

E. The transformation of (1) into 
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THEOREM 3. All diabolic magic squares of order f our can be derived 
from a single one by successive applications of A, B, C, D, and E. 



418 BARKLEY ROSSER AND R. J. WALKER [June 

PROOF. By use of C and D, 1 can be brought into the upper left-
hand corner. Thus there is no loss of generality in taking a = 1, k = 16. 
Then c and J e a n at most be 14 and 15, so that c+d^29. Hence 6 ^ 4 . 
Similarly ç ^ 4 , d ^ 4 , e ^ 4 , i ^ 4 , wi=4. Since a+b+e+f = 34, 
a+d+e+h = 3A1 a+b+tn+n = 34:1 and a+d+m+p = 34: by Theo­
rem 1, one can similarly get ƒ ^ 4 , fe^4, w ^ 4 , p^4. Thus 2 and 3 
can only occur in the positions g, j , /, and o. If 2 occurs in the o or / 
position, it can be brought to the j position by one or two applica­
tions of E. If 2 occurs in the j position, it can be brought to the g posi­
tion by an application of A. So one can take g = 2, m = 15 with no loss 
of generality. If 3 occurs in the / or j position, it can be brought to the 
o position by one or two applications of E. Hence one takes o = 3, 
0 = 14, i = 4, c = 13. Now d = 2 0 - 6 , and by Theorem 2, Z = 17 —6, 
7 = 6 - 3 . By Theorem 1, / = 1 9 - 6 , so that & = 6 - l , n = 18 —6, 
p = b — 2. Hence we have to find values of & such that 6 — 3, 6 — 2, 
6 - 1 , 6, 1 7 - 6 , 1 8 - 6 , 1 9 - 6 , and 2 0 - 6 are 5, 6, 7, 8, 9, 10, 11, and 12 
in some order. Clearly 6 = 8 or 6 = 12. With 6 = 8, we get 
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By applying C, B, and 4̂ successively to this we get the square that 
would result from putting 6 = 12. Thus all diabolic magic squares can 
be obtained from the one shown by successive applications of A, B, 
C, D, and E. 

THEOREM 4. There are 384 diabolic magic squares of order four. 

PROOF. If X and Y are two transformations, denote by X Y the 
transformation effected by first performing Y and then performing X. 
Then (a) BA=ABS; (b) CA=AD; (c) DA=AC; (d) CB=BD; 
(e)DB=BC*; (f) DC=CD; (g) EA=AB*CDE; (h) E2A=B*CDE2; 
(i) EB=B*CDE; (j) E2B=ABCDE2; (k) EC=C*E2; (1) £ 2 C 
= £2OD2E; (m) ED=ACE*; (n) EW=AB2DE; (o) , 4 2 = £ 4 = C4 

= Z}4 = .E3 = the identical transformation. These relations were ob­
tained by inspection and can be easily verified. By means of (a)-(o) 
one can, in any product of A, B, C} D, E, get all the E's to the right, 
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then all A9s to the left, then all B's next to the A's, and finally all 
C"s next to the B's] so that any product of A, B, C, D, E is equal to a 
product of the form A^B^C^D^E*. Moreover A, B, C, and D all carry 
rows into rows and columns into columns, or rows into columns and 
columns into rows, so that neither E nor E2 is a product of A, B, C, 
and D. Moreover, if a square is mapped on a torus, B, C, and D all 
leave the orientation unchanged, so that A is not a product of B, C, 
and J9. Clearly B, C, and D are independent. Hence AaB$ODbE* 
= AaBbCcDdE° if and only if a^a (2), p = b (4), y = c (4), i s d (4), 
and e = e (3). Hence the order of the group generated by 4., B, C, D, 
and E is 2 X 4 X 4 X 4 X 3 = 384.* As each transformation is a permuta­
tion of the sixteen elements of the square, different transformations 
cannot yield the same square. So there are 384 diabolic magic squares. 

This theorem disagrees with the result of D. N. Lehmer, A census 
of squares of order 4, magic in rows, columns, and diagonals, this Bulle­
tin, vol. 39 (1933), p. 981. Lehmer's count was 48. I t is easy to see 
the source of Lehmer's error. Lehmer found all squares which were 
normalized with respect to certain transformations, R, S, T, and U, 
and picked out the diabolic ones. However, Lehmer's transformation 
U destroys diabolism, thus certain of his normalized squares which 
are not diabolic give rise to diabolic squares when operated on by U. 
Hence Lehmer missed these squares in his count. 

The present count was checked against Frenicle's list of magic 
squares. In so doing, we discovered the following startling result: 

If there are two antipodal elements of a magic square of order four 
which add up to 17, then the magic square is diabolic. 

The defining conditions of a magic square plus the single condition 
that a particular pair of antipodal elements add up to 17 give ten in­
dependent equations in the sixteen elements of the square, as con­
trasted with twelve independent equations arising from the defining 
conditions for a diabolic magic square. That the two sets of equations 
are equivalent is due to the diophantine condition that the elements 
must be 1, 2, • • - , 16 in some order. 

* H. S. M. Coxeter has suggested that this group may be isomorphic with the 
symmetry group of the Cartesian frame in four dimensions, as the two groups are of 
the same order. That this is so can be shown as follows. The elements Ri—ABCE, 
R2=AB*D, IU = BCE, R*=AB, will generate our group, since A =i?ii?3, £ = i?ii?3i?4, 
C' = RiRsRiRiRiRz, D = i?3i?4i?8i?2, E = RiR3R2Rsf as may be verified by the relations 
(a)-(o). The Rt satisfy the relations R? = (RiR*)2 = (RiR*)2 = (R2R4)2 = (RiR*)* 
= CR2-R3)3 = (RsRi)4— 1, hence our group is a factor group of the above mentioned sym­
metry group (Coxeter, Journal of the London Mathematical Society, vol. 10 (1935), 
pp. 21-25). The group in question is designated by [32, 4]. Since the two groups have 
the same order they are isomorphic. 
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If one weakens the requirements still further and only asks that a 
square be magic in the rows and columns, then a pair of antipodal 
elements can add up to 17 without the square being diabolic. This is 
illustrated by 
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which is magic in rows and columns, but not in diagonals, and which 
has a+k = e+o = 17. 

An analogous treatment of the problem of finding all diabolic magic 
squares is given by Kraitchik on page 167 of his book, La Mathé­
matique des Jeux, where he shows that all diabolic magic squares can 
be derived by successive applications of A, B, C, and D from three 
particular ones which he gives. 
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A NOTE ON REGULAR BANACH SPACES* 

B. J. PETTIS 

Introduction. For an element x of a Banach space J50t it 'ls w eU 
known that the functional 

XJJ) = ƒ(*) 

defined over Bi = B0, the Banach space composed of all linear func-
tionals (real-valued additive and continuous functions) defined over 
B0, is linear; moreover $ 

IWk = IMk; 
hence the additive operation Xx = T(x) from B0 to B2=Tïx is continu­
ous and norm-preserving. In B2 let 52

(0) denote the set of image ele-

* Presented to the Society, October 30, 1937. 
t S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932, p. 53. We shall use 

Banach's terminology. 
t Banach, loc. cit., pp. 188-189. 


