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T H E CALCULUS OF VARIATIONS APPLIED TO 
NÖRLUND'S SUM* 

BY TOMLINSON FORT 

Nörlund's sum f function 

s f(x)Ai 

has many resemblances to a definite integral. The purpose of 
the present note is to point out how some of the classical meth­
ods of the calculus of variations can be applied to such a sum. 
It may be that the field will prove fruitful for further research. 

We shall consider the problem of minimizing (maximizing) 
the sum 

(1) Ç F(x, y, Ay, A*y, • • • , Any)Ax, 
c 

where we have exactly the same understanding of what con­
stitutes a minimum as in the classical problem of the definite 
integral. 

1. Euler's Equation. We shall seek a necessary condition that 
a continuous real y minimize 

(2) §F(x,y,Ay)Ax 
c 

similar to Euler's equation for the corresponding integral. The 
condition of fixed end points in the integral problem is here re­
placed by the condition that y be fixed over the interval 
c^x^c+1 and at the point b. 

For brevity in writing denote A3; by y', F(x, y> Ay) by F(x), 
and assume that y is continuous and that F, Fy, and Fy> are 
continuous in their arguments throughout all neighborhoods 
considered in the sequel. 

* Presented to the Society, September 9, 1937. 
t Milne-Thompson, The Calculus of Finite Differences, page 201. In the 

present paper the difference interval is assumed to be 1. 
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Assume that y minimizes (2). Give to y a variation er](x) 
where rj(x)=0 when x^c+l, when x = b, and when x>M, 
where M equals b plus an integer. We assume also that rj(x) 
is continuous throughout its range of definition. Let Arj = ri'. 

Under these restrictions 

<K<0 = K F(x, y + €77, yf + en')àx 
c 

converges and is a function of e. 
We can differentiate under the integral sign inasmuch as all 

that is involved is an integral over a finite interval and a finite 
sum. We thus obtain the formula 

d 
- 0 ( e ) = Ç (vFy + v'Fy')AX 

I ^ C 

= \ rjFyAx + \ rj'Fy'Ax. 
^"^ c ^"^ c 

Summation by parts* yields 

\ r]'(x)Fv>Ax = Fy>(b) \ r)'(x)Ax - I Fy(x) \ rj
/(x)Axdx 

^"^ c ^ ^ c J c ^"^ c 

p& pz+1 
— \ AFy>{x) \ rj'(x)AxAx 

c c 

Fr(x)rj(x)dx 

- \ v(x + l)AFy>(x)Ax 
^"^ c 

= - Çr)(x + l)AFy>(x)àx 
^ ^ c 

pH-1 
= — \ ri(x)AFy'(x — \)Ax 

^ c+l 

— ~~ \ ri(x)AFv>(x — l)Ax since rj(b) = 0. 

* Milne-Thompson, page 206. 
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c+l 

= Ç y(x)[Fy(x) - AF^(x - \)]Ax. 
E=0 ^ C+l 

Moreover, since rj(x)=0 also when c^x^c+l, 

Consequently 

# I 
de |e=o ^^ c+i 

This is necessarily zero for a minimum. Then necessarily 

(3) Fy(x) - AFy(x - 1) = 0, » ^ c + l . 

Suppose it were not true at x^c+1 where x?±b+ny (n = 0, 1, 
2, • • • ). Assume rj=Q at all points except a neighborhood of 
x not extending to any b+n, and throughout which Fy(x) 
—AFy>(x — l) retains the same sign. For an rj^Q throughout 
this neighborhood this yields d<£/de |e = = 0^0. Moreover, since y 
is continuous it must also satisfy (3) when x — b + n; also M is 
as large as we please. Hence, a necessary condition that a con­
tinuous y render (2) a minimum (maximum) is the satisfaction 
of (3), which we write 

(4) Fy{x + 1) - AFv>(x) = 0, x ^ c. 

The resemblance of this to Euler's equation for the integral is 
immediate.* 

By exactly similar arguments making the assumptions that 

!?(*) = 0, c^xSc+n, and r)(b) =r)(b+l)= • • • =r](b+n- 1) = 0, 

we arrive at the following analogue for Euler's equation as a 
necessary condition for the rendering of (1) a minimum (maxi­
mum) : 

Fy(x+n)-AFy>(x+n-\)+ • • • + (-l)nAnFy^(x) = 0, x^c, 

where yW = Any. 

LEHIGH UNIVERSITY 

* Some special cases of the difference equation (4) were studied in detail 
by the author in the American Mathematical Monthly of March 1936. In 
that paper the independent variable was limited to integral values. Necessary 
modifications to make the discussions given there apply when the independent 
variable is continuous are not considered of sufficient interest to warrant 
printing. 


