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ON REFLECTION OF SINGULARITIES OF HARMONIC 
FUNCTIONS CORRESPONDING TO T H E 

BOUNDARY CONDITION du/dn+au = 0 

BY HILLEL PORITSKY 

1. Introduction. Familiar "reflection" principles across a plane 
at which a harmonic function u satisfies either of the two bound­
ary conditions 

(1) u = 0, 

(2) du/dn = 0, 

where d/dn denotes the normal derivative, extend the function u 
from one side of the plane to the other one by means of its nega­
tive or positive image respectively. In particular, the singulari­
ties of u to one side of the plane are also reflected into their 
negative or positive images. 

In the following we consider the nature of the "reflection" or 
analytic continuation of a harmonic function u across a plane 
boundary corresponding to what is perhaps the next simplest 
boundary condition, namely: 

du 
(3) h au = 0, 

dn 

where a is a constant. It is shown that the image of each singu­
larity 5 0 of u is relatively complex and consists of 

(a) a positive image Si of S0 in the boundary plane ; 
(b) an exponential trail of negative images along the line 

through 5o and Si, beyond Si, and totalling in amount 
double the negative of S0. 

Results similar to the above are established for other differential 
equations; for instance, for the equation of heat conduction. 
Conditions with higher order derivatives are also considered. 

Aside from the interest of the subject matter in connection 
with analytic continuation, as well as from the point of view of 
general curiosity that makes one "peep behind the looking 
glass," the subject is also of interest in view of several pos-
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sible applications. One application is to the problem of heat 
flow from an underground source; another one is to the problem 
of eddy currents induced in a semi-infinite solid with a plane 
boundary by nearby alternating currents. These applications 
are discussed. 

2. Analytic Continuation of Harmonic Functions Correspond­
ing to (3). Consider a function u, harmonic for x^O and satisfy­
ing the boundary condition: 

du 
(4) au = 0 along x — 0. 

dx 
Let 

du 
(5) w = au. 

dx 
The function w is also harmonic, while along x = 0 it vanishes. 
Hence w may be continued analytically to x < 0 by means of 
negative reflection : 

(6) w(— x, y, z) = — w(x, y, z). 

Substitution from (5) converts (6) into a differential equation 
whose solution yields 

(7) u(— x) = - u{x) + 2a J ea(x'~x)u(x')dx'. 
J o 

This is what the simple negative and positive reflection corre­
sponding to (l)*and (2) respectively is to be replaced by in case 
of (4). 

3. Green's Function Corresponding to (4). To examine the na­
ture of reflection of the singularities of harmonic functions satis­
fying (4), consider for x>0 a function u which satisfies the fol­
lowing requirements : 

| (a) u is harmonic except near P 0 = (h, 0, 0). 
I (b) near P0 , u is of the form u = l / r 0 + ^ / , where r0 is the 

(8) < distance from P0 , and u' is harmonic. 
(c) u and its first derivatives vanish at infinity. 

[(d) along x = 0, u satisfies the boundary condition (4). 
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This function u may be designated briefly as the "Green's func­
tion" for x>0 with pole at P 0 , corresponding to the boundary 
condition (4). 

If the real part of a is non-negative, 

(9) R(a) â 0, 

a solution of (8) is given by 

(10) v = 1/fo + 1/fi ~ 2a/, 

where 

(11) / = f (^<*+*'yr')<**'; 

here n is the distance to Pl={ — h1 0, 0) and r ' the distance to 
the point (#', 0, 0) on the x-axis. If we use an electrostatic ter­
minology which designates l/r0 as the potential of a unit charge 
at Po, the solution v may be described as the potential of unit 
charges at Po and Pi and of a line distribution of charge of 
density — la ea^x+h) per unit length of the x-axis, extending from 
x = — oo to Pi . The total charge of the line distribution is 
-2af\a(<x+hHx= - 2 . Added to the unit charges at P 0 and Pi 
this results in a net charge zero. Thus v vanishes at infinity and 
to a higher order than 1/r. 

To prove that v satisfies the boundary condition (4), one 
proves 

dl 
— = - i / f l + ai 
dx 

by differentiating under the integral sign, replacing d(r~l)/dx 
by —d(r~l)/dx', and integrating by parts. It follows that 

dv / 1 1 \ d / 1 1 \ 
(12) av = al ) + ƒ _ + _ ) . 

dx V i fo / dxVo fl / 
Since the latter vanishes at x = 0 the proof is complete. 

4. Wa^s #ƒ Arriving at the Preceding Green's Function. Its 
Uniqueness. Introduce the function w given by (5). The latter 
is harmonic for x>0 except at P 0 where it becomes infinite like 
d( l / r 0 ) /ôx —a/r0; it vanishes at infinity and also vanishes at 
x = 0. It follows then that u satisfies (12): 
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du / d \ / 1 \ / d \ 1 
(13) w =* au = [ a)( — ) + ( — + a)—-

dx \dx / Vo / \dx / f\ 
Integration of (13) in the form 

ƒ» oo /» —oo 

ea(x-x,)w(x', y, z)dx' = I e~asw(x + s, y, z)ds, 
x J o 

and consequent integration by parts and simplification, lead to 
(10), (11). 

Another way of obtaining u—and this is the way in which it 
was first obtained—is by means of the Fourier or Fourier-Bes-
sel integral. This will be found useful for the case in which a 
does not satisfy (9). In the latter case it will be seen that while 
(13) still persists, the integrals in (11), (14) are divergent. 

Write u in the form 

(15) u = —+ f f(\)e-^Jo(\p)d\, 

where p2 = y2+z2; utilizing the familiar integral expansion 

ƒ• 0 0 

o 

and letting the resultant integrand of u satisfy (4), one obtains 

(17) /(X) = e~*h - e~*h 

X + a 

The first term in (17) leads to the positive image at P i . The sec­
ond term yields 

(18) - 2a \ 
J o 

e-^x+h)J0(\p)d\ 

X + a 

By deforming the path of integration in the complex X-plane the 
analytic continuation of u to x < 0 may be obtained and a charge 
density — 2a ea( x+h) deduced along the negative x-axis for x<—h. 
For negative a the path of integration in (18) must avoid the 
pole X= —a and hence cannot be confined to the real axis. We 
shall not stop over the particulars. The analytic continuation of 
harmonic functions by deforming the path of integration of 
proper integrals will be considered at a future date. 
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I t is worth noting that for negative a the solution of (8) is no 
longer unique, since many harmonic solutions of the homogene­
ous equation du/dx—au = 0 (see (13)) exist which are harmonic 
and vanish at infinity for x > 0 , namely, 

(19) C(y, «)*", 

where C is a solution of 

d2C d2C 
(20) + + a2C = 0. 

by2 dz2 

Thus, when we confine ourselves to axial symmetry, u is arbi­
trary to within a multiple of 

(21) Jo(ap)ea*, 

which will be recognized as proportional to the residue of the 
integrand (18) at the pole X= —a. 

For R(a)*tQ the Greene function vanishes at infinity for 
x^O; for i?(a)<0, if the vanishing at infinity (condition (8d)) 
is to be interpreted as applying for all x, then no solution of (8) 
exists. 

5. The Reflection of Singularities of Other Harmonic Functions. 
The singularities of other single-valued harmonic functions can 
be obtained by reflections similar to that of the Green's func­
tion. For instance, the harmonic function which becomes singu­
lar at P 0 like d(l/r0)/dy (while satisfying (8a), (8b), (8d)) is 
equal to dv/dy, where v is given by (10). Describing the singu­
larity at Po as a dipole of doublet of unit moment whose axis is 
in the direction of the y -axis, we see that the analytic continua­
tion to x<0 has a similar dipole at P i and an exponential trail 
of dipoles along the x-axis beyond Pi . This follows from the 
fact that if u satisfies (4), so does also du/dy, or it may be proved 
by replacing the derivative by a limit of a difference quotient, 
interpreting each of the terms of the difference as a potential of 
a point charge, applying the now familiar reflection to it, and 
passing to the limit. 

The harmonic function u which becomes singular like 
d(l/ro)/dx at Po is not given by dv/dx where v is given by 
(10) since, if u satisfies (4), du/dx will not in general satisfy it; 
this harmonic function may, however, be obtained by the limit-
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ing process which analyzes the singularity at P 0 into singulari­
ties of point charges. There results the formula 

2a C ~h ea^x+h^ 
(22) u = • h 2a2 dx', 

dx dx Y\ J-n r' 
exhibiting for u a dipole at Pi but of opposite moment to that 
at Po, a point charge of amount — 2a, and an exponential trail 
of positive charges. 

Harmonic functions which satisfy (4) but fail to satisfy 
Laplace's equation over curves, surfaces, or regions by behav­
ing like the potentials of distributions of charges over these re­
spective loci, are similarly treated for reflection across x = 0 by 
replacing the integrals by finite sums, reflecting the point charge 
singularity of each term, and passing to a limit. 

6. The Two-Dimensional Green's Function Corresponding to 
(4). The two-dimensional case can be treated similarly to the 
three-dimensional one. The condition (8b) is replaced by the 
requirement that, near P0=z(h, 0), u is to become infinite like 
— In r0= —ln[(x — h)2+y2]112; the requirement (8c) at infinity 
might be kept, though the condition u = 0(ln r) in its place would 
be suggested by the theory of the logarithmic potential. One 
proves similarly that 

ƒ — h 

l n f V < * + x ' W . 
- o o 

The interpretation in terms of a positive image and an exponen­
tial trail of negative images is obvious. 

For the present (two-dimensional case) the representation of 
u as the potential of a charge distribution is not at all unique. 
We shall prove this for real positive a. 

Indeed, by integration by parts and introducing imaginaries, 
(23) may be put in the form 

u = R\ln- h 2 f [<?«+*'>/(z - x')]dx' 
L z — h J -to 

where z = x+iy* and "R" denotes "the real part of." Replacing 

* No confusion is likely to arise from the use of s in a sense different from 
its previous one. 

•G >B 

• 
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the (dummy) variable of integration xf by z', one may deform 
the path of integration from the real axis into an arbitrary curve 
C between the same limits. Thus 

r z + h C ea(h+zf) "1 
(24) u = R In + 2 dz'\, 

L z — h J c z — z' J 

z + h C / dz' \ 
u = Rln + 2 £[e«<*+«'>]22( ) 

( 2 4 0 * ~ * Jc \z-z'J 

- i \ /!><*+*'>]ƒ(—Z—T)> 

where I(z) refers to the "imaginary part of z" Now the real as 
well as the imaginary part of l/(z — z') represents a potential of 
a doublet or dipole placed at z = z'. Hence the curve integrals 
in (24') can be interpreted as the potential of a proper distribu­
tion of (logarithmic) dipoles over C, with axes respectively nor­
mal to and along C. The tangential dipoles can by integration 
by parts be reduced to a distribution of poles. 

Of the various charge distributions the one derived from (23) 
is, no doubt, the simplest one. 

By integrating (24) one obtains 

(25) 
( z+h r ,) 

= R<]R 2ea^Ei[- a ( A + *)]>, 
I z — h ) 

where Ei denotes the "integral exponential." The latter is multi­
ple-valued. Another way of proving that u may be considered 
to be the potential of a variety of distributions is by rendering Ei 
single valued by using a branch corresponding to a cut along the 
curve C. The resulting discontinuities in C and its normal deriv­
ative, when divided by 2w, yield the densities of normal doublets 
and of poles respectively. 

The Fourier integral (in y) of u is also of some interest. Start­
ing with the form (24) and utilizing 

1 r 

z JQ 
e~zH\ for R(z) > 0, 

one obtains 
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r % + h f00 e-^+z)x 1 
u = R\ In 2 I d\ 

, N L z — h J o a + X J 
(26) 

r2 f00 e-x<*+*> cos Xy 
= In 2 — dX. 

fi J o a + X 
The Fourier integral as well as (25), (26) apply for R(a) ^ 0 , 

as well. 
7. Otóer Differential Equations. Applications. As stated in the 

introduction, the reflection of singularities across a plane bound­
ary corresponding to the boundary condition (3), in terms of a 
positive image and an exponential trail of negative images, can 
be carried over to certain other differential equations. Among 
these are 
(27) V2u — X^ = 0, X = constant, 

(28) du/dt = kv2u. 

The proof is again carried out by forming the function w given 
by (5), reflecting it, then solving for u. 

For (28), the heat conduction equation, the boundary condi­
tion (4) represents a loss of heat (for real positive a) at the plane 
boundary x = 0 at a rate proportional to the boundary tempera­
ture. If we consider singularities due to instantaneous or perma­
nent "heat sources" (while (4) applies), the temperature can in 
every case be determined by using a similar image source as 
well as an exponential trail of "sinks." 

For steady point or line heat sources, (10) and (25) essentially 
still apply since (28) reduces to Laplace's equation. As an ex­
ample of an instantaneous source recall that 

(29) v = (A<Kkt)-le-(*2+v2)l*ki for t > 0, v = 0 for t < 0, 

represents the temperature in an infinite medium due to an 
instantaneous line source of heat at the time t = 0 along the 
s-axis, the amount of heat discharged being so chosen that 
ffvdxdy = l for />0 .* The temperature due to a similar line 
source at (h, 0) when (4) holds is given by 

* See Carslaw, The Mathematical Theory of Conduction of Heat in Solids, 
Chap. IX. 
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•ƒ" 
(30) r~h 

- 2 a \ ea(x^h)e-[(x+x')+h2]l4kt^ # 

The last integral can be expressed in terms of the "complemen­
tary error" function defined by: erfc(x) = (2/7rV2)f^e~u2du. 

Another application of the boundary condition (3) that will 
now be considered is in connection with eddy currents excited in 
a conducting semi-infinite solid x < 0 by alternating currents 
flowing in free space in the region x>Q. Time is assumed to 
enter as a factor ei(at. If angular frequency co is not too high, 
displacement currents may be neglected; then electromagnetic 
field theory, as expressed, say, by Maxwell's equations, shows 
that the components of both the magnetic and electric field in 
the solid conductor satisfy the differential equation 

(31) V2u = a2u, 

where 

(32) a = (l + i)j8, /3 = (27TCOX^)1/2, X = conductivity, ju = permeability. 

In free space the field components are harmonic in regions free 
from currents; near each current element di=(l, tn, n)\i\ds, 
the electric and magnetic fields become infinite respectively like 

(33) E = 4wiœdi/r, 

H = 4irVX(di/r) 

(34) = 4 x | i | [ ( m ^ - n £ ) , ( . . . ) , (•••)](!/'), 

where r is the distance to the current element, while /, m, n 
are its direction cosines. At the boundary x = 0 the tangential 
field components Hyy Hz; Ey, Ez are continuous. 

We shall be concerned with the asymptotic behavior of the 
solution for large j8. It will be shown that for /3 large the differ­
ential equation (31) can be replaced by proper boundary con­
ditions on the components of the harmonic functions E, H. 

By examining cases where a complete solution is available it 
is found that for large /3 or large | a \ , the terms d2u/dy2, d2u/dz2 

in (31) are negligible in comparison with the remaining terms, 
so that (31) approximately reduces to 
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whose pertinent solutions are 

(36) u = u(y9 z)eax. 

Physically, the constant l/]3 has the dimensions of a length, and 
when this length is small (compared to the dimensions of the 
exciting circuit and its distance from the plane x = 0), the field 
developed in the conducting solid decays rapidly with penetra­
tion into the solid and the resulting currents are confined to a 
thin layer near the boundary thus exhibiting the phenomena of 
"skin effect." Using the above approximation we see then that 
within x<0 all the field components are of the form (36), 
where the coefficient of eax refers to their values at the boundary 
of the solid. Applying now the boundary conditions at x = 0, one 
proves readily that the normal magnetic field Hx satisfies the 
boundary condition 

(37) ( — }HX = 0 at x = 0. 
\dx ix / 

Suppose that the current \i\ flows along the closed curve Co. 
From (34) it will be seen that J0a./47r | i | becomes infinite at Co 
after the manner of the potential due to a distribution of 
doublets or dipoles along Co and with axes parallel to the plane 
x = 0. Applying the results of §5 to the reflection of Hx across 
x = 0 (the constant a is now equal to a/fi and satisfies (9)), one 
is led (so far as Hx is concerned) to an image of the original cur­
rent along Ci, the reflection of Co in x = 0, as well as to a current 
sheet or solenoid along the cylinder which projects Co, C\ on 
the plane x = 0, the current density along the latter being 
— 2(a/fÂ)eaffi(x+h) per unit x for x<—h. The remaining field 
components may be shown likewise to agree with the field of the 
original current and the images just described. 

The distributed currents, it will be noted, are not "in phase" 
with the original current. 

If Co is parallel to the plane x = 0, then the electric field is 
likewise parallel to it, and the boundary condition (37) is satis­
fied by its components Ey, Ez. 

It is possible to express the induced electromotive in terms of 
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the mutual inductances between C0 and its images in planes 
x = constant. It is intended to treat this subject at greater length 
at a future date and to present an exact treatment, including 
the nature of the reflections when (31) is not approximated by 
(35). 

8. Higher Normal Derivatives. In this concluding section we 
shall consider the extension obtained when (4) is replaced by a 
boundary condition involving higher derivatives: 

d2u du 
(38) \- a h bu = 0 along x = 0, 

dx2 dx 
where a and b are constants ; a proper restriction on a and b will 
be indicated below. It will be shown that a singularity at P 0 

corresponding to a point charge will be reflected into two ex­
ponential trails along with a point charge. 

Perhaps the most elegant manner of arriving at this conclu­
sion is by means of the algorithm of Heaviside's operational 
calculus.* 

Denote the charge density of u along the x-axis by p(x) and 
replace d/dx by p. At P 0 the charge density of u would be 
denoted by So(x — h), where the singular function S0(x) repre­
sents the "unit impulse" at x = 0. Applying the left-hand opera­
tor of (38) to u, one obtains a harmonic function which vanishes 
at x = 0. The charge distribution of this function is given by 
(p2+ap+b)p(x), and for x>0 this reduces to (p2+ap+b) 
'So(x — h). The negative reflection in x = 0 leads to the further 
charge — (p2 — ap+b)So(x+h). Hence 

(p2 + ap + b)p(x) = (p2 + ap + b)S0(x - h) 

- (p2 + ap + b)S0(x + *). 
Solving for p{x), we obtain 

(p2 - ap + b\ 
p(x) = So(x — h) — I }So(x + h) 

\p2 + ap + bj 
/ A B \ 

= So(x - A) - (1 + + )So(x+ h). 
\ p - a p-P/ 

* The reader who is unfamiliar with the latter will prefer to regard the fol­
lowing not as a proof but as a heuristic lead toward a result which is to be 
substantiated in some other way, for instance, by means of Fourier or Brom-
wich integrals, or by direct substitution in (38) of the potential derived. 
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To obtain the last equation the partial fraction resolution 

\p-a p-P/ 

p2 - ap + b lap 
(41) *—— = 1 — 

p2 + ap + b p2 + ap + b 
was uedjhere a, /? are the roots of p2+ap+b = 0. Interpret­
ing (40) for the case where R(a)>0, R(J3)>0, one obtains 

p(x) = So(x — k) — S0(x + h) 

- [Ae«(*+» + £*«<*">]#(- * - A),* 

where H(x) is unity for positive x and zero for negative x. Thus 
there is a negative point charge at x = — h and a distributed 
charge of density — [Aea^x+h)+Bea<^x+h)] for x<—h. Since 
^4j3+j3a = 0, the total amount of distributed charge vanishes. 

I t is of interest to point out that the content of (10), (11), 
and (22) can be derived in a similar fashion. In the former case 
one condenses the argument of §3 into 

(43) (p - a)p(x) = (p - a)S0(x - h) + (p + a)S0(x + h); 

in the latter case, the charge density at Po is pSo(x — h), and 
one obtains, by applying (p — a) and using negative reflection 
inx = 0, 

(44) (p - a)p(x) = (p - a)pS0(x - h) - (p + a)pS0(x + h). 

Solving (43), (44) for p(x) and using partial fractions, one ob­
tains 

(45) p(x) = So(x - h) + S0(x + h) + 2a/(p - a)S0(x + h), 

(46) p{x) = pSQ(x - h) - [2a + p + 2a2/(p - a)]S0(x + h), 

respectively, and, interpreting [l/(p — a)]S0(x+h) as in (40), 
one is led to the charges implied in (10), (23). 

GENERAL ELECTRIC C O . 

SCHENECTADY, N.Y. 

* The present interpretation of [l/(p—<x)]So(x+h) differs from that of the 
orthodox operational calculus and corresponds to using a Bromwich integral 
with the path of integration lying to the left of the origin. This could have been 
avoided by placing the original singularity along the negative #-axis. 

The more customary notation is 1 in place of H(x) and pi in place of So(x). 


