having only a finite number of invariant points, this configuration of invariant lines becomes a finite number of bundles, having vertices at the invariant points. If however, m>0, any line t_{π} in the plane π meets Δ_m , and t_{π} is invariant and is counted mtimes in the complex. Thus the plane π is a singular plane for the complex. We shall see further that t_{π} is also singular in I.

4. The Singular Lines of I. When $t \equiv l$, then $C_3(t)$ is indeterminate, since l meets every $C_3(\alpha, \beta)$ twice. But the point L where l meets π under Γ an image L', and since I is involutorial, any line of the bundle (L') may be considered as the conjugate of l.

When t meets π in a fundamental point R of Γ , then t' is any generator of a ruled surface Φ_{4r} of order 4 times the multiplicity r of R in Γ . In order to see this, consider the plane curve ϕ_r in π , the principal curve corresponding to R in Γ . Each point of ϕ_r may be taken as R' and through this point passes one bisecant of $C_3(t)$. Thus ϕ_r is simple on Φ_{4r} . But, in π lie three bisecants of $C_3(t)$ and each of these meets ϕ_r in r points, thus making each bisecant of multiplicity r on Φ_{4r} . The plane π then meets Φ_{4r} in ϕ_r and in three lines each of multiplicity r, making a total intersection of order 4r.

When $t \equiv t_{\pi}$, any line in π , then any point of τ_n , the image of t under Γ , may be taken as T' and thus t_{π} is transformed by I into a ruled surface of order 4n.

5. The Special Linear Complex with Axis l. We have already seen that the conjugate t' of an arbitrary line t does not meet the line l of the vertices of the pencils of cones, and since I is involutorial, a line t belonging to the special linear complex with axis l must have for its conjugate a line t' which also belongs to this special complex. The Plücker coordinates of t will be such that if t belongs to the regulus of t' be such that t' belongs to this regulus also. Thus the special linear complex with axis t' is invariant as a whole, but not line by line.

NORTH CAROLINA STATE COLLEGE

ERRATUM

On page 877 of the December, 1936, issue of this Bulletin, in line 16, change $O(n^{-i})$, to $o(n^{-i})$.