[February,

CURVES BELONGING TO PENCILS OF LINEAR LINE COMPLEXES IN S_4

BY C. R. WYLIE, JR.

1. Introduction. It has been demonstrated in at least two ways^{*} that every curve in S_3 , whose tangents belong to a non-special linear line complex can be mapped into a curve in S_3 all of whose tangents meet a fixed conic. In this paper, similar theorems are obtained for curves in S_4 whose tangents belong to (1) a single linear complex, (2) a pencil of linear complexes.

In what follows we shall use the symbol Γ to represent a nonspecial complex, that is, a complex which does not consist of the totality of lines which meet a plane. We shall use the symbol Π to represent a pencil of complexes which does not contain any special complexes. The customary symbol V_m^r will be used to represent a variety of order r and of dimension m.

2. Hyperpencil of Lines. We note first that no curve lying in S_4 but in no linear subspace of S_4 can belong to a special complex. For all the tangents of such a curve would have to meet the singular plane of the complex, which would require the osculating S_3 's of the curve to contain the plane. This is impossible unless the curve lies entirely in an S_3 containing the singular plane. We are thus concerned with non-special complexes in (1) and with pencils which contain no special complexes in (2).

Through an arbitrary point of S_4 pass ∞^2 lines belonging to a non-special complex Γ . These lines lie in an S_3 , the polar S_3 of the point as to Γ , and form what we shall call a hyperpencil of lines. For every complex Γ , there is a unique point with the property that every line which passes through that point belongs to Γ . We shall call this point the vertex of Γ . Of the five types of pencils of complexes in S_4 all but one contain special complexes. The one admissible type, Π , consists of ∞^1 complexes whose vertices lie on a non-composite conic, K. Through an ar-

* V. Snyder, Twisted curves whose tangents belong to a linear complex, American Journal of Mathematics, vol. 29 (1907), pp. 279–288.

C. R. Wylie, Jr., Space curves belonging to a non-special linear line complex, American Journal of Mathematics, vol. 57 (1935), pp. 937-942.

bitrary point of S_4 pass ∞^1 lines of Π , forming a plane pencil. Through a point of K pass ∞^2 lines of Π . These lines lie in an S_3 , and thus form a hyperpencil. Only one line of an arbitrary plane field belongs to Π , while all lines in the plane, σ , of K belong to Π .

3. The Associated V_{6^5} in S_{9} . If the ten Grassman coordinates of the lines of S_4 be regarded as point coordinates in S_9 , the five quadratic identities which exist among the line coordinates define a variety which is known to be of order five and of dimension six. The lines of S_4 are represented^{*} in S_9 by the points of this V_6^5 . A ruled surface in S_4 is represented in S_9 by a curve on V_6^{5} . If the ruled surface is developable, not only the image curve but its tangent developable lies on V_{6^5} . The tangents to the image curve in this case are the images of the pencils of lines lying in the osculating planes of the cuspidal edge of the developable in S_4 , and having their vertices at the points of osculation. A linear complex is represented in S_9 by the V_{5^5} common to V_{6} and the S_{8} which the equation of the complex defines. If a curve in S_4 belongs to a linear complex its image curve, that is, the image curve of its tangent developable, lies with its tangents on the V_{5} which represents the complex.

Through the vertex of a complex, Γ , pass ∞^3 planes each of which contains ∞^2 lines of Γ . On V_5^5 these are represented by planes. Suppose there is on V_{5} a curve C' and its tangent developable, the image of a curve C in S_4 which belongs to Γ . Working now in the S_8 given by the equation of the complex, Γ , let us project this configuration from one of the planes, ω' , of V_{5} upon an S_{5} . The singular elements in the projection are the ∞^2 planes which meet ω' in a line. These are the images of the hyperpencils of lines belonging to Γ which issue from the points of ω , the plane field of lines in S_4 whose image in S_9 is ω' . Each tangent to C' meets one of these singular planes, because in S_4 each osculating plane of C meets ω in a point, and hence there is in each osculating plane one line which passes through the point of osculation and belongs to a hyperpencil whose vertex is in ω . The configuration of C' and its tangents will thus project into a curve C'' in S_5 all of whose tangents meet the surface which is the projection of the singular planes.

To determine the order of this surface consider the polar

1937.]

^{*} Compare W. L. Edge, Ruled Surfaces, 1931, §2.

 S_3 's as to Γ of the points of ω . There are only ∞^1 of these S_3 's, for all points of ω collinear with the vertex of the complex have the same polar. These S_3 's set up a 1:1 correspondence between the points of an arbitrary line L, and the lines in ω which pass through the vertex of Γ . Moreover, the line joining any point P of ω to the point of L corresponding to the line through P and the vertex of Γ determines with the pencil of lines of ω which pass through P a hyperpencil whose image is a singular plane of the projection. When sectioned by a general linear complex, the double infinity of lines which join the points of ω to their corresponding points on L yields the single infinity of lines joining corresponding points of L and a conic in ω . Such a family of lines is evidently of order three, hence the lines which determine with the pencils of lines of ω the hyperpencils whose images are singular planes of the projection are represented on V_{5} by a cubic surface. This projects into a cubic surface in S_{5} ; hence we have the following theorem.

THEOREM 1. Every curve in S_4 whose tangents belong to a nonspecial linear line complex can be mapped into a curve in S_5 all of whose tangents meet a cubic surface.

We have already noted that the five quadric hypersurfaces which are defined by the five quadratic identities existing among the coordinates of the lines of S_4 intersect in a V_{6^5} and not in a $V_{4^{32}}$ as would be the case in general. Since the V_{5^5} which is the image of Γ is obtained from V_{6^5} by sectioning the latter with an S_8 , it follows that V_{5^5} is determined by five V_7^2 's. From this fact it is evident that the projection can be reversed, and that any curve in S_5 whose tangents meet the cubic surface which is the projection of the singular planes can be mapped into a curve in S_4 which belongs to a linear complex.

4. Map of a Curve in S_4 . If a curve C of S_4 belongs to an admissible pencil of complexes, II, its image curve, C', lies with its tangents on the V_4^5 which is the image of II, and which is defined by V_{6^5} and the S_7 given by the equations of II. Let us project such a configuration upon an S_4 from the plane σ' which is the image of the lines of the plane σ of K, the locus of vertices of the complexes of II. The singular elements in the projection are the planes of V_{4^5} which meet σ' in a line, namely, the planes

which are the images of the ∞^1 hyperpencils of lines belonging to Π which issue from the points of K.

Now the lines which lie in the osculating planes of C and pass through the points of osculation all belong to II; likewise all lines of σ belong to II. Hence at every point where an osculating plane of C meets σ there are three non-coplanar lines of II, and hence ∞^2 lines of II. But the only points of σ through which pass ∞^2 lines of II are the points of K. Since every osculating plane of C meets σ , we have the following theorem.

THEOREM 2. The osculating planes of every curve of S_4 belonging to a pencil of linear line complexes which contains no special complexes, meet a fixed conic.

The converse of this theorem is not true, as the following example shows. The osculating planes of the curve

$$x_1: x_2: x_3: x_4: x_5 = 45t^4: 18t^5: 10t^6: -20t^3: 1$$

meet the conic $x_2^2 = x_1x_3$, $x_4 = 0$, $x_5 = 0$, but the curve belongs to but one complex.

From this theorem it follows that every tangent to C' meets in a point one of the planes which are singular in the projection. The projection of these planes is a curve whose order can be found by considering the 1:1 correspondence set up between the points P of the conic K and the points P' of an arbitrary line L, by the polar S_3 's as to Π of the points P. Each hyperpencil whose image is a singular plane of the projection is determined by the lines of σ which pass through one of the points of K, together with the line joining this point of K to its corresponding point on L. The lines joining corresponding points of K and L form a cubic regulus whose image on V_4 is a cubic curve. This projects into a cubic curve in S_4 ; hence we have the following theorem.

THEOREM 3. Every curve in S_4 whose tangents belong to a pencil of linear line complexes containing no special complexes can be mapped into a curve in S_4 all of whose tangents meet a fixed cubic curve.

Evidently this process can be reversed, and a curve in S_4 whose tangents meet a fixed cubic can be mapped into a curve in S_4 belonging to a pencil of linear complexes.

1937.]

5. Equations of a Curve in Γ or Π . If the equation of Γ be taken as $P_{13}+P_{24}=0$, the equation of a curve belonging to Γ can be written down at once from the results^{*} for three dimensions:

A:
$$x_1 = t$$
, $x_2 = tf' - 2f$, $x_3 = f'$, $x_4 = 1$, $x_5 = g$,

where f and g are arbitrary functions of t, and the primes indicate differentiation with respect to t. If Π be chosen as $P_{13}+P_{24}=0$, $P_{12}+P_{45}=0$, the equations of C are found to be

B:

$$x_1 = t, x_2 = tF'' - 2F', x_3 = F'', x_4 = 1, x_5 = -t^2F'' + 4tF' - 6F,$$

where $F = \int f(t)dt$, f(t) has the same significance it had in equations A, and the primes indicate differentiation with respect to t.

6. Bundles of Complexes in S_4 . Of the fifteen types of bundles of complexes in S_4^{\dagger} all but one contain special complexes. A bundle of the admissible type consists of ∞^2 complexes, the locus of whose vertices is a quartic surface in S_4 . The lines belonging to such a bundle are all trisecants of the locus of vertices. Of the triple infinity of these trisecants, a double infinity are tangents, and a single infinity are inflexional tangents. Through an arbitrary point of S_4 passes a unique line of the bundle. Through each point of the locus of vertices pass ∞^1 lines of the bundle, forming a plane pencil. Thus those curves, if any, whose tangents belong to the bundle must lie on the locus of vertices. Segre‡ has shown that there is a unique curve, the rational normal quartic in fact, belonging to a bundle of this type. This quartic curve is just the locus of vertices.

Systems of complexes of more than two degrees of freedom cannot contain curves of S_4 .

Ohio State University

^{*} C. R. Wylie, Jr., loc. cit.; B. Segre, Sulle curve le cui tangenti appartengono al massimo numero di complessi lineari independenti, Memorie dell'Accademia dei Lincei, (6), vol. 2 (1928), pp. 578-592.

[†] R. Weitzenbock, Zum System von drei Strahlenkomplexen im vier dimensionalen Raum, Monatshefte für Mathematik und Physik, vol. 21 (1910), pp. 103-124.

[‡] B. Segre, loc. cit.