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A SPECIAL PARAMETERIZATION OF CURVES 

BY MARSTON MORSE 

1. Introduction. Parameterization of curves by means of arc 
length fails when the arc length is infinite. The present paper 
develops the properties of a special parameterization of curves 
which never fails to exist and which is most useful in applica­
tions. The special parameter is called a jit-length and is an ex­
tension of a function of sets defined by H. Whitney* and applied 
by Whitney to families of simple non-intersecting curves. The 
curves employed in the present paper are general continuous 
images of a line segment. This necessitates a slight modification 
of the definition of Whitney taking order into account. The 
properties of /x-length developed here are directed largely to­
wards applications in abstract variational theory. While many 
of Whitney's ideas go over, there are nevertheless certain sharp 
differences both in the proofs and in the results. In particular 
the variational theory of general families of closed curves re­
quires concepts not readily suggested either by the functions of 
Whitney or the extension developed here. The results of the 
present paper will be applied in the author's paper entitled Ab­
stract variational theory. 

2. The fx-Length. Let N be a space of points p, q, r with a 
metric which is not in general symmetric. That is, to each or­
dered pair p, q of points of N there shall correspond a number 
denoted by pq such that pp = 0, pq>0 if p?^q, and 

(1) pq ^ pr + rq. 

We term pq the distance from p to q. Let | pq\ denote the maxi­
mum of pq and qp. We term | pq\ the absolute distance between 
p and q. We see that \pq\ = | qp\ and that | pq\ S | pr\ +1 rq\. 
The points of N taken with the distance | pq | form a metric 
space which we denote by | N \. We shall use the metric of N 
in defining ju-lengths. For other purposes, in particular in defin-

* H. Whitney, Regular families of curves, Annals of Mathematics, vol. 34 
(1933), pp. 244-270. Also Proceedings of the National Academy of Sciences, 
vol. 18 (1932), pp. 275-278 and pp. 340-342. 
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ing continuity on N and | N\, we shall use the metric of \N\. 
Let t be a number on a closed interval* (0, a). Let ƒ(£, t) be 

a single-valued (numerical) function of p and / for p on | N\ and 
/ on (0, a). The function ƒ(£, /) will be termed continuous at 
(q, r) iî f(p, i) tends to ƒ(<?, r) as a limit as \pq\ + | ^ — r\ tends 
to 0. For each value of / on (0, a) and point p on | iV| let cj>(p, t) 
be a point on \N\. The (point) function </>(p, t) will be termed 
continuous at (g, r) if the distance | </>(p, t)cf)(q, r) | tends to 0 as 
a limit as | pq\ + \t — r\ tends to 0. 

Let p(t) be a continuous point function of t for / on (0, a). 
We term p = p{t) a parameterized curve X (written ^-curve) and 
regard two parameterized curves as identical if they are defined 
by the same point function pit). We also say that X is the con­
tinuous image on | N\ of (0, a). In general curves on I iVJ will be 
denoted by Greek letters ce, /3, • • • , while points on | iV| will be 
denoted by letters p, q, r, • • • . 

Let X be a £-curve on \N\ given as the continuous image 
p = p(t)oîan interval 0 ^ / ^ a . For w ^ 2 l e t / i ^ / 2 ^ • • • ^ / n b e a 
set of n values of / on (0, a) and let (pi, • • • , pn)~Sn be the 
set of corresponding points p on X. We term Sn an admissible 
set of n points on X. Let the minimum of the numbers pipi+i 
as i ranges from 1 to n — 1 be denoted by d(Sn) and let the 
least upper bound of all such numbers d(Sn) for a fixed n be 
denoted by /xw(X). Following Whitney we then set 

/ n x M2(X) MS(X) M4(X) 

(2) „, « , _ _ + _ + _ + . . . . 
We term the /*\ the fi-length of X. 

We enumerate certain properties of /xn(X) and jU\. 
(a) jLt2(X) =d , the diameter of\. 
(b) ju„(X) ^d, and fiÇK) ^d. 
(c) fjLn(\) tends to 0 as n becomes infinite. 

* For the sake of simplicity we assume tha t a > 0 and that our ^-curves 
do not reduce to points. One could however admit ^-curves which reduce to 
points. The ^-lengths of such curves is zero and we would thus admit intervals 
(0, a) for which a = 0. For such exceptional curves Fréchet distance is denned 
in the obvious manner. Theorem 2 is obvious if £ reduces to a point. In the 
proof of Theorem 4, in case Xo reduces to a point, (17) is an easy consequence 
of XXo<5 provided ô is sufficiently small. Otherwise the theorems and proofs 
hold as written even when the ^-curves reduce to points. 
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(d) M»(X)^M»+I(X). 

(e) If pit) is not identically constant none of the numbers /xn(X) 
isO. 

Statements (a), (b), (c), and (e) are obvious. To establish (d) 
let Sn+i be any admissible set of w + 1 points pi, • • • , pn+i on X, 
( w > l ) . There is an integer k such that pkpk+i = d(Sn+i)- We 
shall form an admissible set Sn on X by removing one point from 
5w+i. If ky^l we remove pi. If k = 1 we remove />n+i. In both 
cases the pair pk, pu+i remains and d(Sn) ~d(Sn+i). The set of 
all numbers d(Sn+i) is thus a subset of the numbers d(Sn)* Hence 
(d) is true. 

Let n(t) be the /z-length of the ^-curve on X defined by p = p(r) 
for r on the interval (0, /). We shall show that fx(t) has the fol­
lowing properties. 

(f) jj,(t) is a continuous, non-decreasing f unction of t, 
(g) M(0 is constant on each interval on which pit) is constant. 
(h) flit) is constant on no interval on which pit) is not constant. 
It is clear tha t /x(/) is non-decreasing. To show that /x(/) is 

continuous let rj be the ^-curve defined by p = p(t) for 0 ^ / ^ r 
<a, and let e be an arbitrary positive number. There exists a 
positive number ô so small that 

(3) | pit)pir) | ^ — ; (r S t ^ r + ô ^ a). 

Let f be the £-curve defined by p = p(t) for O^t^r+d. Let 5n
2 

be an admissible set of n points on f. Let S} be an admissible 
set of n points on 77 obtained by replacing each point of 5,? for 
which t>r by pir). No point of Sn

2 is thereby moved a distance 
greater than e/2. Hence 

<*(«) S diSni) +e, 

(4) M»(f) ^ /*»(*) + c, 

M(r + Ô) ^ M(T) + «. 

Since ju(/) is non-decreasing, (4) implies continuity on the right. 
Continuity on the left is similarly established, and the proof of 
(f) is complete. 

Statement (g) requires no proof. To establish (h) we assume 
that there are values r and T' of t on (0, a) with rf > r such that 



918 MARSTON MORSE [December, 

p(0), pij), and p(r') are distinct. Let h and k be the ^-curves 
defined by p(t) for / on (0, r) and (0, r ' ) , respectively. We shall 
prove that fJ,k>Vh> To that end, let 2c be the minimum value 
of p{t)p{T)+p{t)p{rt) as / ranges on (0, r ) . We observe that 
c^O since p^^pir'). Let Sn be an admissible set of points 
Pu ' ' ' » Pn on &. We form 5n+i on & by adding one point £n+i 
to 5 n as follows. If 

(5) #»#(T) à c, 

we add £ ( T ) . If (5) does not hold we add P(T'), and note that 

(6) Pnp{r') â c 

by virtue of our choice of c. We suppose N so large an integer 
that d(Sn) <c for n>N. For such values of n it follows from 
(5) and (6) that d(S'n+i) =d(Sn), and hence 

(7) Mtt+l(&) ^ Mn(A). 

Since iLn{h) is not 0 and tends to 0 as n becomes infinite, for some 
value of n>N, 

(8) pjji) > Mn+lO), 

and for such an wit follows from (7) and (8) that/xn+i(ife) >jjLn+i(h). 
From this relation and from (2) it follows that /Xfc>Mfc as stated. 
The proof of (h) is complete. 

3. Equivalent p-Curves. Let rj and f be two ^-curves given by 
the respective equations 

(9) P = P®, (OÛt^o), 

(10) q = q(u), (O^u^b). 

Let H be a sense-preserving homeomorphism between the closed 
intervals (0, a) and (0, b). A homeomorphism of the nature of H 
will be termed admissible. Let u = u(t) be the value of u corre­
sponding to / under H and let D(H) be the maximum of the dis­
tances | p(t)q [u(t) ] | as t ranges over (0, a). The Fréchet distance 
rjÇ between rj and f is the greatest lower bound of the numbers 
D(H) as H ranges over the set of all admissible homeomor-
phisms H between rj and f. We observe that rjÇ = f rj ^ 0, and one 
readily proves tha t for any three ^-curves 77, f, X, rçX^rçf+fX. 
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We shall say that rj is derivable from f if there exists a contin­
uous non-decreasing function u — u{t) which maps the closed 
interval (0, a) onto the closed interval (0, b) and such that 
pit) = q[u(t)]. Two ^-curves which are derivable from the same 
^-curve 77 will be said to be equivalent. 

Let JJL(I) be the /i-length of rj from the point 0 to the point t. 
Let t(ix) be the function inverse to fi(t). To each value of \x on 
the interval 0^JJL=IJLV there corresponds a value or interval of 
values £(JU). We set 

(ID p[t(ji)] = r(/0, ( 0 ^ / X ^ M X ) , 

and observe that r(/x) is single-valued by virtue of (h), §2. We 
shall prove the following proposition. 

(A) The function r(ix) is continuous in JJL. 

Let /xo be a value of /*(/). Corresponding to /-to, let r i ^ / ^ r 2 

be the interval of values taken on by t(n) at JU0 (TI may equal r2). 
Corresponding to a positive constant e there exists a positive 
constant ô so small tha t 

(12) I p(n)p(t) I < e, (r2^t^T2 + ô). 

As / ranges over the interval in (12), /j,(i) increases from juo to a 
value Mi>Mo. From (12) we infer that \r{fi^)r{ix)\^e for 
Mo^M = Mi- Thus r(/x) is continuous on the right at fxo. Con­
tinuity on the left is established similarly, and the proof of (A) 
is complete. We shall now prove the following statement. 

(B) The curve rj is derivable from the curve r = r(ji), (0 ^fx tkv-q). 

I t follows from the definition of r(fi) in (11) that p{t) = r[M0]> 
and the proof of (B) is complete. We term r = r(ji) a fx-parameter-
ization of rj and state the following theorem. 

THEOREM 1. Two p-curves are equivalent if and only if they 
have the same IJL-parameterization. 

If rj and f are equivalent, they are derivable from a common 
^-curve X and will have ju-parameterizations identical with that 
of X. Conversely, if rj and f have a common /x-parameterization 
r = r(ji), rj and f are both derivable from r = r(fi) in accordance 
with (B) and hence are equivalent. We shall prove the following 
theorem. 



920 MARSTON MORSE [December, 

THEOREM 2. The Frêchet distance between a p-curve f and a 
p-curve 7] derivable from f is null. 

Suppose 7] and f have the representations (9) and (10), respec­
tively. Suppose 77 is derivable from f under the substitution 
u = u(t), so tha t p(t)=q[u(t)] for t on (0, a). Let c be an arbi­
trarily small positive constant and consider the transformation 

(13) u = [u(t) + ct] \ , ( 0 ^ | a ) . 
[_b + caj 

This transformation establishes a homeomorphism between the 
closed intervals (0, a) and (0, 6). Denote the right member of 
(13) by <t>(t, c), and let Xc be the ^-curve 

(14) q = q[<K*,c)], (O^tSa). 

The Fréchet distance fXc = 0. For under the transformation (13) 
corresponding points of f and Xc are identical. To show that 
77̂  = 0 we make use of the relation rjÇ^77XC+Xcf = 77XC. If c is 
sufficiently small, points on 77 and Xc determined by the same 
values of t on (0, a) are arbitrarily and uniformly near since 
0(/, 0) E=u(t). Hence T;XC tends to 0 with c. But 77̂  is independent 
of c and must then be 0. The proof of the theorem is complete. 

We shall now prove Theorem 3. 

THEOREM 3. If rj and f are two p-curvesfor which rjÇ<e, then 

Let Sn be an admissible set of n points on 77. There exists an 
admissible set Sn' of n points on £* with distances from the 
correspondingly numbered points of Sn less than e. Hence 
\d(Sn)—d(Sn)\ ^ 2 ^ , and we infer that|/zw(f) — ̂ n(rj)\ S2e. Upon 
referring to the definition (2) of ju-length we conclude that Theo­
rem 3 holds as stated. We state the following corollary. 

COROLLARY 1. If 77̂  = 0, ^ = /Xf-

4. Curves. A class of equivalent p-curves will be called a curve 
class or a curve. 

Let a and /3 be two curves. Let 77 and 77' be ^-curves in the 
class a, and f and f ' ^-curves in the class j8. I say that 

(15) i»r = i»r. 
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Relation (15) follows from the relation 

For 7777' = 0, since 77 and 77' are at a distance 0 from their common 
//-parameterized curve X in accordance with Theorem 2. Simi­
larly ff' = 0. Upon reversing the roles of 77̂  and 77'f we infer 
that (15) holds as stated. We are accordingly led to the following 
statement and definition. 

The distance between any two p-curve classes a and /3 equals the 
distance between any other two p-curves in the classes a and /?, re-
spectively, and will be taken as the distance a(3 between the curves 
a and /3. 

Let X be an arbitrary curve with ^-length /z\. A pair (X, M) will 
be termed admissible if 0 ^ M = MX- For admissible pairs (X, >LC) 
let qÇK, M) be the point on X which determines the /x-length M on 
X. The following theorem is fundamental. 

THEOREM 4. The point function qÇK, M) is continuous* in its 
arguments on the domain of admissible pairs (X, /*). 

We shall prove (X, M) continuous at (X0, Mo) understanding 
that (Xo, Mo) is admissible. Let e be an arbitrary positive con­
stant. We shall show that there exists a positive constant 8 such 
that if (X, M) is admissible and 

(16) XXo < 5, I ft — /xo J < 5, 

t h e n 

(17) I #(X, /z)?(Xo, MO) I < e. 

To that end we shall subject ô to two conditions as follows: 
(i) We take ô<e/2. If XXo<ô, there will exist a homeomor-

phism T& between ju-Pa r a meterizations of X and Xo in which 
corresponding points have distances less than d. If the point \x 
on X thereby corresponds to \x\ on Xo, 

(18) I g(X, M)?(XO, Mi) I < ~ 

* We have not yet shown tha t for two curves a and 0, aP = 0 only if cx = p. 
But this is not necessary to speak of continuity. The proof of our theorem will 
imply tha t q(a, /x) =#(/3, ju) when a/3 = 0. 
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(ii) The second condition on ô is that S be so small that when 
|Mi— Mo| <3S, 

i i e 

(19) I g(X0, Mi)?(Xo, Mo) | < —• 

This condition can be satisfied by virtue of the continuity of 
g(Ao, M) in M-

With ô so chosen I say that (17) holds for admissible pairs 
(X, M) satisfying (16). We introduce T& and MI on X0 as in (i), and 
recall tha t 

(20) | q(fi, X)gGuo, X0) | ^ | g(X, MM^O, MI) | + | g(X0, Mi)g(Xo, Mo) | . 

The first term on the right of (20) is less than e/2 by virtue of 
(18) and the second term is likewise, provided (19) is applicable; 
that is, provided |MI""MO| <35. But under T8 a point M on X will 
correspond to a point MI on Xo such that | M — M I | < 2 Ô in accord­
ance with Theorem 3. Hence |MI~~MO| <35, (19) is applicable, 
and the right member of (20) is less than e. The proof of the 
theorem is complete. We conclude this section with the follow­
ing theorem. 

THEOREM 5. A necessary and sufficient condition that two p-
curves rj and f have the same ^-parameterization is that rçf = 0. 

To prove the condition necessary, let X represent a M-parame-
terized curve determined by rj and f. Then rjÇ ^rçX+Xf. But 
77X = Xf = 0 by virtue of Theorem 2. Hence the condition is neces­
sary. To prove the condition sufficient suppose that 77̂" = 0 and 
let p = p (M) , (0 ^ M = M*?) > Ç. = ÇL (M) > (0 = M ^ fa) > be M-parameteriza-
tions of rj and £*, respectively. By virtue of Corollary 1 to Theo­
rem 3, Mu = Mr- It then follows from Theorem 4 that £(M) and 
q(fj) differ by a quantity arbitrarily small in absolute value. 
Hence P(JJL) = ^ ( M ) , and the condition is proved sufficient. Theo­
rem 5 taken with Theorem 1 gives the following corollary. 

COROLLARY 2. A necessary and sufficient condition that two 
p-curves rj and f be equivalent is that rjC = 0. 

Another way of stating the corollary is to say that for two 
curves a and (3, a(3 = 0 if and only if a=/3. 
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