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DERIVED SETS AND T H E I R COMPLEMENTS 

BY S. T. SANDERS, JR. 

1. Introduction. Denoting by gA the derived set of a set A in 
a general topological space* S, and by cA the complement S — A 
of A, we consider the family of sets <j)A, where </> is a product 
involving the operator c and operators of the form ga, a being 
an ordinal, finite or transfinite. Important examples of opera­
tors are eg, gcf g2c, cgc. The following discussion is based on the 
assumption of the distributive and closure properties: 

I . g{A+B) = gA +gB, 

I I . g2AcgA. 

In §§2-5 eight elementary sets are defined, from which a ca­
nonical system of sets is obtained. This canonical system is suffi­
cient for the representation of all sets of the form <f>A and the 
finite sums and products HcfrA, II<M, and Z)II<M, with the ex­
ception of certain subsets of the derived set of the isolated points 
of the space S. In §6 specializations of the general theory are 
given to spaces possessing either or both of the properties: (a) 
self density, (b) g0 = 0. Under restrictions (a) and (b), the basic 
set of inclusions (10), which is fundamental for the discussion 
of §§4 and 5, is found to be logically equivalent to a set of in­
clusions given by Kuratowskif for the set A, having the proper­
ties of the closure A +gA of A. In §7 are presented various prop­
erties of the elementary sets. All relations are established for­
mally, though Axioms I, II are equivalent to the assumption of 
a neighborhood space with open sets for neighborhoods, so that 
all results may be had by classification of neighborhoods with 
respect to the distribution of the points of A and cA. The sym­
bols —» and c denote respectively implication and inclusion. 

* See M. Fréchet, Les Espaces Abstraits, 1928; E. W. Chittenden, On gen­
eral topology, Transactions of this Society, vol. 31 (1929), pp. 290-321; W. 
Sierpinski, La notion de dérivée comme base d'une théorie des ensembles abstraits, 
Mathematische Annalen, vol. 97 (1926), pp. 321-337. 

f C. Kuratowski, Sur Vopération A de Vanalysis situs, Fundamenta Mathe­
matica, vol. 3 (1922), pp. 182-199. 
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2. Reduction Formulas. From the distributive law I we have 
gA + gcA = gS. Taking complements, we obtain the following 
lemma. 

LEMMA 1. We have eg A c gcA -{-J, where J = cgS, the set of iso­
lated points of the space. 

From I also follows the monotonie property 

(1) X c F - > gX cgY. 

Since X c Y—±cYc cX, we have also, by (1), 

XcY-^gcY cgcX, 

->cgY ccgX, 

-» gcgYcgcgX. 

Instead of referring to the monotonie property (1), it will be fre­
quently convenient to speak of operating with g on X c F. Like­
wise we shall operate with c, gc,- • -. 

LEMMA 2. For any operator 0, J ccgcfrA. 

The lemma follows on applying the operator eg to the inclu­
sion cj>A c 5. 

LEMMA 3. For any operator 0, g J cgcgcfrA. 

This is an immediate consequence of (1) and Lemma 2. 
The following reduction formulas hold for any ordinal a. 

FORMULA I. gcgA =gcgaA. Operating with g on Lemma 1, we 
obtain by the closure property II, 

(2) gcgA c g2cA + gJ c gcA + gJ, 

whence, on replacing A by gA, we find gcg2A c gcgA + gJ) or by 
Lemma 3, gcg2A c gcgA. The reversed inclusion is obtained by 
operating with gc on the inclusion g2A c gA, so that we shall 
have gcgA = gcg2A. Replacing A by gA, we get gcgA =gcg%A, 
and the desired relation follows at once. 

FORMULA II . gcgA =gacgA+gJ. Replacing A by cgA in 
g2A cgA, we shall have g2cgA c gcgA, whence, by Lemma 3, 

(3) g2cgA + gJc gcgA . 
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Replacing A by gA in (2), we get gcg2A c g2cgA + gJy whence, 
by Formula I, gcgA cg2cgA + gj. From this and (3) follows 

(4) gcgA = g2cgA + gJ. 

Operating on (4) with g, we have g2cgA = gzcgA + g2J, whence 
(4) may be written in the form gcgA = gzcgA + gJ. The re­
quired formula follows immediately. 

Preliminary to Formula III we have the following lemma. 

LEMMA 4. gXcgc Ycg(XY) c gXg Y. 

The second inclusion is a direct consequence of the monotonie 
property. As for the first, we may write, by I, 

gX = g(XY + XcY) = g(XY) + g(XcY), 
whence 

(5) gXcgcY = [g(XY) + g(XcY)]cgcYczg(XY) + g{XcY)cgcY-

but, by the second inclusion of the lemma, g(XcY) cgXgcY, so 
that we have g(XcY)cgcYcgXgcYcgcY = 0, and, by (5), the 
lemma is established. 

FORMULA I I I . gcgA=gcgcgcgA. In Lemma 1 we replace A 
by cgA, obtaining, by II, cgcgA c g2A + Jc gA + J, whence, on 
operating by g, 

(6) gcgcgA c g2A + gJcgA + gj. 

Again, replacing A by cgA, we have, by Lemma 3, 

gcgcgcgA c gcgA + gJ = gcgA. 

To establish the reversed inclusion, we proceed as follows. Oper­
ating on (6) with gc, we have 

(7) g(cgAcgJ) c gcgcgcgA . 

Now in Lemma 4, on setting X — cgA, Y = cgJ, we shall have 
gcgAcgUc g(cgAcgJ), or by the closure property, 

(8) gcgA c g(cgAcgJ) + gJ. 

But, by Lemma 3, g/cg(cgAcgJ), so that (8) reduces to 

(9) gcgA c g(cgAcgJ). 

By (7) and (9) the desired relation is established. 
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3. A Canonical System of Sets. Consider now a set cf>A, where 0 
is any combination of the deriving and complementing opera­
tions. By Formulas I, I II , we have 

gacgtcgVcg8A = gacgcgcgA = g°cgA. 

Thus it appears that when any derived set of A is operated on 
with gc, the only distinct sets obtainable by further operations 
with g and c are of the types gacgA, cgacgA, gacgcgA, cgacgcgA. 
The following theorem is thus established. 

THEOREM 1. For any operator <p, the set cj>A reduces to A, cA, 
cgA, cgcA, cgcgA, cgcgcA, or else may be obtained by operating on 
one of these sets with ga or cga. 

4. Definition of the Elementary Sets. The following lemma is 
needed. 

LEMMA 5. For any ordinals a, /3, and operator <£, 

g^cg^A = gtcg<t>AcgJ + gacg<f>AgJ, 

cgacg<j>A = cg^cg<j)AcgJ + cgacg(j>AgJ. 

By the closure property and the Formula II previously stated, 
we have 

gacg<j>A c gcg(j>A = g*cg<j>A + gj, 

whence we obtain gacg<j>AcgJ = g$cg<t>AcgJ, and 

gacg<j>A = g<*cg<t>AcgJ + gacg<j>AgJ = g?cg<l>AcgJ + gacgct>AgJ. 

The rest of the lemma follows on taking complements. 
The following fundamental inclusions hold for all values of a. 

11. eg acA cJ c cgcgcgcA cJ. 

Operating on (6) with eg""1, and replacing A by cA, we have 
cgacAcgj c cgacgcgcA , whence cgacAcgJ c cgacgcgcAcgJ. But, 
choosing /3 = 1 in Lemma 5, we have cgacgcgcAcgJ = cgcgcgcA cgJ, 
so that the preceding inclusion becomes, by Lemma 3, 

cgacAcgJ c cgcgcgcAcgJ = cgcgcgcA . 

Multiplying by c / , we have cgacAcJ = cgacAcgJ c cgcgcgcA cJ, 
which is the desired inclusion. 

12. cgcgcgcA cJ c gacgcA . 

In Lemma 1 we replace 4̂ by cgcgcA, and have, by II, 
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cgcgcgcA c g2cgcA + J c gcgcA + J. 

Multiplying by cgJcJ, we obtain cgcgcgcAcJc gcgcAcgJcJ', by 
Lemma 3. But by Formula II, gcgcAcgJ = gacgcAcgJ, whence the 
above inclusion yields cgcgcgcA cJ c gacgcAcgJcJ c gacgcA . 

13. cgcgcgcA cJ c cga<;ĝ 4 . 

Applying the operator gc to (2), we get g(cgcAcgJ) c gcgcgA. 
Since, by (9), gcgcA c g(cgcAcgJ), we have then gcgc.4 c gcgcgA, 
or, replacing 4̂ by c^4, gcg.4 cgcgcgcA cgcgcgcA + J. From the 
closure of derived sets, we have gacgA c gcgA c gcgcgcA + J. On 
taking complements, the desired inclusion is obtained. 

By operating with con 13, 12, I I , respectively, and replacing 
A by cA, the following inclusions are obtained : 

14. gacgcA c gcgcgA + J. 

15. cgacgA c gcgcgA + J. 

16. gcgcgA + J c g"A + J. 

Consider now the following special forms of the inclusions 
11-16, where ax and a2 are the least ordinals a such that gacgcA 
and gacgA, respectively, are perfect: 

c galcgcA c 
(10) cgcAcJ c cgcgcgcAcJ gcgcgA + / c gA -\- J. 

c cga2cgA c 
From the monotonie nature of the six sets (10), it is seen that 

the first, the complement of the sixth, and the differences of the 
sixth and fifth, the fifth and second, and the second and first, 
are mutually disjoined and fill the space S. The difference of 
the fifth and second sets, namely, (gcgcgA + J) (gcgcgcA+J)} 

may be decomposed into four non-overlapping sets by means of 
the intervening sets, galcgcA and cga2cgA. Thus we obtain a de­
composition of 5 into eight non-overlapping sets. With certain 
reductions by (10), Lemmas 2 and 3, we list these eight sets, 
and shall refer to them as elementary or, more briefly, E sets: 

Ei = cgcAcJ, £2 = cgcgcgcA cJc(cgcAcJ) = cgcgcgcA gc A, 

Ez = galcgcAcga2cgAc(cgcgcgcAcJ) = gaicgcAcga2cgAgcgcgcA, 

(11) £ 4 = cgAcJ, £5 = (gA + J)c(gcgcgA + J) = gAcgcgcgA, 

£e = (gcgcgA +J)cga^cgcAc(cga2cgA) = gcgcgAcg«icgcAg«*cgA 

E7 = g^cgcAg^cgA , Es = cgaicgcAcga2cgA . 
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It is seen that the replacement of A by cA interchanges £1 
and £4 , E2 and £5, £3 and £6 . Thus, corresponding to a theorem 
holding for a set of one of these pairs, there is an identical the­
orem valid for the other set. We shall make use of this symmetry. 

5. The General Canonical System. 

LEMMA 6. 7 c £ 8 ; gJ c ES+EQ+E7+ES. 

I t is seen by (11) that every E set except Es has either the fac­
tor cj or else a factor g<t>A, and so by Lemma 2 is disjoined from 
J. Likewise Ei and £ 4 contain the explicit factor cgj, while E2 

and £5 have factors cgcgcgcA and cgcgcgA, which by Lemma 3 
are contained in cgj. 

By Lemma 6, 3, and 5, we may obtain from (11) the following 
decomposition of the sets mentioned in Theorem 1. 

Eé+E,+cgJ(E&+E7)+gacgAgJ. 

E1+E2+cgJ(E3+E8) + cg^cgAgJ. 

E1+E2+cgJ(Es + E7) + g-cgcAgJ. 

Et+Es+cgJ(E*+Es) + cg°cgcAgJ. 

E1+E2+cgJ(Es+EQ+E7) + cJEs+gacgcgAgJ. 

Eé+Eb+J+cgacgcgAgJ. 

EA+Ei+cgJ(Es+Et+E7) + jE*+g"cgcgcAgJ. 

Ei+E2+J+cg"cgcgcAgJ. 

Expressions for the sets gaA, cgaA, gacA, cgacA of Theorem 1 
in terms of the E sets cannot be obtained in this manner, since 
Lemma 5 does not apply to these sets. We have instead the fol­
lowing lemma. 

LEMMA 7. 

PlCgJ = £1 + E2 + cgJ(E3 + £ 6 + Ei) + cJEs + P 1 £ 5 , 

PicgJ = P2E2 + cgj E3 + £ 4 + £5 + cgj (E* + E7) + cJEs, 

where Pi, P2, are respectively the perfect components of A, cA. 

By (11), Lemma 6, and 16, we have for every a 

(13) £1 + E2 + cgJ(Es + £ 6 + £7) + cJEs = gcgcgAcJcg«A . 

Since £4 is disjoined from gA, the lemma follows. 

g°cgA = 

cgacgA = 

gacgcA = 

cgacgcA = 
(12) 

gacgcgA = 

gacgcgcA = 

cgacgcgcA — 
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By (11) and Lemma 7 we have 

g«A = E, + E2 + cgJE, + P,Eh + Z ^ « (tfA - g^lA) 

+ cgJ(E, + E7) + cJEs + P ig / , 

cg*A = E, + £ , < a WA - ff+*A) +J + gJcg«A, 

gacA = P2E2 + E ^ « (gfcA - g^cA) + cgJEs + E4 + £5 

+ cgJ(E6 + E7) + cJEs + P2gJ, 

cg«cA = E1+ £ , < a (gtcA - g^cA) + J + gJcg°cA. 

In (12) and (14) we have the required decomposition of the 
sets of Theorem 1. Since by (13) each set g?A — g$+l A lies in 
Ez+gJ, we may sum up our results in the following theorem. 

THEOREM 2. Any finite sum of finite products 2110^4 is ex-
pressible, aside from a subset of g J, as a sum chosen from E\, 
P2E2, gtcA -g^cA, cgJEs, Eit PxEh% g?A -g^A, cgJE,, cgJE7, 
cJEs, J, and products of these sets by A and cA. 

To illustrate, consider the set X = g2cgcgcgAcgcg2cgAg*AgcgA. 
Applying Formulas I and III , we have X = g2cgAcgcgcgAgzAgcgA, 
whence by the closure of derived sets, X = g2cgAcgcgcgAgzA. 
Finally, (12) and (14) give X = P 1 £ 5 +X^ 3 (g / ^4 -g*+lA), aside 
from a subset of gJ. 

6. Specializations. Most of the spaces commonly occurring in 
geometry and analysis, such as Euclidean w-space, Hilbert 
space, and all continua, have the self-dense property, and also 
the property g0 = 0. If we set J = gJ = 0, the results of the pre­
ceding sections are considerably simplified. Formula II reduces 
to gcgA =gacgA, and the inclusions (10) become* 

c gcgcA c 
(15) cgcA c cgcgcgcA gcgcgA c gA . 

c cgcgA c 
The elementary sets (11) reduce to 

Ei = cgcA, E2 = cgcgcgcAgcA, E3 = gcgcgcAgcgcAcgcgA, 

(16) E* = cgA, Eh = gAcgcgcgA , E6 = gcgcgAgcgAcgcgcA , 

E7 = gcgcAgcgA , E8 = cgcgcA cgcgA , 

* These inclusions are given by Kuratowski, loc. cit., for the closure function. 
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while the general canonical system of §5 reduces to 

El9 P2E2) 2 tfcA - g^cA), JE„ E4, PxEi9 

E 0^4 - g^A), £6, £7> £8. 

The requirement g / = 0 yields a space slightly more general 
than the preceding, including the case where isolated points / 
exist, yet have a null derived set. The formulas of §§2-5 special­
ize, however, to the very forms (15), (16), (17). The structure 
of the E sets is unchanged except that Es includes the set / . 

We may also specialize the formulas of §§2-5 by requiring 
7 = 0, thus including the case J — gJ = 0 and also the case where 
the derived set of the null set is not null. By the monotonie 
property we have for every set A, gO = g J c gA, so that the in­
clusions (10) again reduce to (15), and the definitions (16) hold 
without change. Since g J c gA, we see that E7 includes g J. 

If we require J+gJ = S, the canonical system of Theorem 2 
is considerably simplified, since the inclusions (10) reduce to 

c galcgcA c 
0 S, 

c cga2cgA c 
so that the only non-null E sets are Es, EQ, E7j ES. 

7. The Nature of the Elementary Sets. The following theorems 
may be obtained. 

THEOREM 3. Ex+EA+Es+gJ is dense on gS. 

THEOREM 4. E3cgJ' = gExcgE±gEscgJ'. 

THEOREM 5. E2 = cgJgEicgE±cgEsgcA. 

THEOREM 6. gEscEs+E7. 

THEOREM 7. gE2 cE2+Ez+E7+gJ. 

THEOREM 8. gE8 c E3+EQ+E7+ES. 

In a space J = gJ = 0 it is evident that Es~cgEicgE^ and 
E7 = gE\gE$. If the space is also of n dimensions, then it follows 
from Theorem 3 that £1, E4, and E8 are ^-dimensional or else 
null, whereas the remaining E sets are at most (^ — ^-dimen­
sional. Specializing further, we have the following result. 

THEOREM 9. In a Euclidean space of more than one dimension, 
E7cgE7 + gEzgEQ. 

S T . JOSEPH, MISSOURI 


