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ON POINCARE’S RECURRENCE THEOREM
BY CORNELIS VISSER

1. Introduction. Let S be a space in which is defined a meas-
ure p such that u(S) =1. Suppose we are given a one parameter
group of one to one transformations 7%, (—© <t<®), of S
into itself, with the properties:

(1) TsTt = Tt-i—s-

(2) For any measurable set E and any ¢ the set T.E is meas-
urable and u(T.E) =u(E).

The following extension of Poincaré’s recurrence theorem was
proved by Khintchine.*

For any measurable E and any N <1,

w(E-T:E) 2 Mu(E))?

for a set of values t that is relatively dense on the t axis.
In this paper we give an elementary proof of this statement.

2. An Auxiliary Theorem. We prove the following theorem
from which the recurrence theorem is an immediate conse-
quence and which is also interesting in itself.

Let S be a space with a measure u such that u(S) =1 and let
Ey, E,, - - - be an infinite sequence of measurable sets in S, all
having a measure not less than m. Then for any N<1 there exist
in the sequence two sets E; and E ;. such that

w(E:Er) = Mm?.
Let us suppose that u(E;E;) <p for any 2 and k. If we put
F1 = E,, Fy= Ey — E)F,, F3 = E; — E;Fy — E3F,,
sy Fon=E,— E)F,1— --- — E/F,

no two of the sets F have common points and F; is part of E;.
Therefore

ul) =m, wlFo) >m—p, uFs)>m—2p,
) N(Fn) >m — (n— 1)17;

* A. Khintchine, Eine Verschirfung des Poincaréschen “Wiederkehrsatzes,”
Compositio Mathematica, vol. 1 (1934), pp. 177-179.
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and thusforun=1,2,- ..,

1
pFr+ -+ Fy) =pF1r+ - - - + uF, "’m—?’”(ﬂ—l)l’-

v

It follows that
1
L= u(S) 2 ulrt o+ Fa) Zm = —nln = 1)p.
We now choose # such that
m m
—<n=—++1.

Then we obtain

m:  m
_— —
2p 2
or

m2

2_+m.

Y

?

Hence, if we exclude the trivial case m =1,
p > ._1._. m2
3
From this it follows that there must be two sets E; and E; with
u(E:E) = —;—nﬂ.

We shall now prove that the factor 1/3 may be replaced by an
arbitrary A <1. We consider the product space S*, formed by
the systems (x1, - - -, x,) of # points in .S, and in this product
space the sequence of sets Ef*, E*, - - - . In S* we can define a
measure g such that the product of # measurable sets of S is
measurable and has a measure that equals the product of the
measures of its components. In applying the result we just ob-
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tained to S* and the sequence E, E,*, - - -, we find two sets
E and E;* such that
1
B(ErER) = 3 (mm)2.
Now
E(ErER)

]

B((E:E)™) = (u(E:Er))",

and consequently

I\

1
W(EEx))" 2 — (m")?,

or

1 1/n
,u(EiEk) g (—3—) m2.
Given A <1, we can always define # such that (1/3)Y»=N\ and
then select the pair E;, E;. This proves the theorem.

3. Proof of the Recurrence Theorem. Assume the contrary:
There is a measurable set E and a number A <1 such that

* w(E-T.E) < Mu(E))?

on arbitrarily large t-intervals. Let I; be a closed interval on
which (*) holds; denote by 2I; its length and by I, its center.
There is an interval I, on which (*) holds and which has a length
>2(L+ | l2| ). Denote by I3 the center of I, and by I; an interval
on which (*) holds and which has a length >2(li+ || +|4|),
and so forth. Then the numbers /,—1I;, ({<k), belong to the
intervals I_;; hence for any 7 and &, (1<),

ﬂ(-E le—l,'E) < A(.""(E))2)
and consequently
#(TliE' leE) < A(M(E))z

in contradiction to the theorem of §2, applied to the sequence
TwE, Ti,E, - - - . This proves the recurrence theorem.

I't will be seen that it is not essential that ¢ in T is a continu-
ous parameter. The same method gives the same result in the
case that ¢ only runs through the values 0, +1, +2, - - - .
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4. Remark. Let the sequence Ey, Es, - - - be asin §2. Then we
can even assert that for every N<1 there exists an infinite subse-
quence E;,, E;,, - - - such that for every p and g

u(Ei,Ey) = Mm?.

We show first that there exists an infinite subsequence
Eyy, E, - - - such that u(Ey, Ex,) ZAm? for every p. Suppose
that no such subsequence exists; then to every n=1, 2, - -
belongs a $, such that

w(E.Ey) < Mm? for m = n+ pa.

Writing #1=1, ne =01+ pn,, #3=n2-+Pn,, + - - , we have then for
every 7 and &,

W(En;En,) < Am?,

which contradicts the theorem of §2. The proof is now easily
completed by applying the diagonal principle.

CAMBRIDGE, M ASSACHUSETTS

ON THE ZEROS OF THE DERIVATIVE OF A
RATIONAL FUNCTION*

BY MORRIS MARDEN

1. Introduction. The primary object of this note is to give a
simple solution of a problem already discussed by many authors
including the present one.t It is the problem of determining the
regions within which lie the zeros of the derivative of a rational
function when the zeros and poles of the function lie in pre-
scribed circular regions.

THEOREM 1.1 For j=0,1, - - -, p let r; and o be real constants

* Presented to the Society, September 4, 1934.

t For an expository account and list of references see M. Marden, American
Mathematical Monthly, vol. 42 (1935), pp. 277-286, hereafter referred to as
Marden I.

} See M. Marden, Transactions of this Society, vol. 32 (1930), pp. 81-109,
hereafter referred to as Marden II.



