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ON POINCARÉ'S R E C U R R E N C E THEOREM 

BY CORNELIS VISSER 

1. Introduction. Let 5 be a space in which is defined a meas­
ure fJL such that fx(S) — 1. Suppose we are given a one parameter 
group of one to one transformations Tt, (— oo< ;<oo) , of S 
into itself, with the properties: 

(1) TsTt = Tt+S. 

(2) For any measurable set E and any / the set TtE is meas­
urable and fi(TtE) =/x(£). 

The following extension of Poincaré's recurrence theorem was 
proved by Khintchine.* 

For any measurable E and any X < 1, 

for a set of values t that is relatively dense on the t axis. 
In this paper we give an elementary proof of this statement. 

2. An Auxiliary Theorem. We prove the following theorem 
from which the recurrence theorem is an immediate conse­
quence and which is also interesting in itself. 

Let S be a space with a measure fi such that JJL(S) — 1 and let 
Ely Ei, • • • be an infinite sequence of measurable sets in 5, all 
having a measure not less than m. Then for any X < 1 there exist 
in the sequence two sets Ei and Ek such that 

lx(EiEh) â \m\ 

Let us suppose that /*(£*£*) <p for any i and k. If we put 

F\ = Ei, F 2 = E2 —• E%Fi, F s — Ez — E2F2 ~~ E3F1, 

• • • , Fn = En — EnFn-l — • • • — jEnFi, 

no two of the sets F have common points and F» is part of Ei. 
Therefore 

l*(Fi) è m, /*(Fa) > m - p, /*(F8) > m - lp, 

- • • , M(f») >m- {n- l)j>, 

* A. Khintchine, Eine Verscharfung des Poincaréschen " Wieder kehrsatzes," 
Compositio Mathematica, vol. 1 (1934), pp. 177-179. 
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and thus for n = 1, 2, • • • , 

1 
lx{F1 + • • • + Fn) = IIFX + • • • + ixFn ^nni-—n(n- l)p. 

It follows that 

1 
1 = M(5) ^ iX(F1 + • • • + Fn) ^ nm n(n - l)p. 

We now choose n such that 

m 

P 

Then we obtain 

1 

or 

P 

Hence, if we exclude the trivial case m = l, 

1 
p > — m 2 . 

3 
From this it follows that there must be two sets Ei and Ek with 

1 
lx(EiEk) ^—m\ 

We shall now prove that the factor 1/3 may be replaced by an 
arbitrary X < 1 . We consider the product space Sn, formed by 
the systems (x\, • • « , xn) of n points in S, and in this product 
space the sequence of sets E?, E2

n, • • • . In Sn we can define a 
measure /Z such that the product of n measurable sets of S is 
measurable and has a measure that equals the product of the 
measures of its components. In applying the result we just ob-

m 
<n^ h i . 
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tained to Sn and the sequence Ex
n, E2

n, • • • , we find two sets 
Ein and Ek

n such that 

1 
ll(E?Ek

n) ^ — {mn)\ 
0 

Now 

fi(E?Ek») = pUEiEt)») = (ju(£*£*))n, 

and consequently 

or 

/ l V /n 

/*(£<£*) ^ ( y ) w2-

Given X < 1 , we can always define w such that ( l /3) 1 / w^X and 
then select the pair Ei} Ek. This proves the theorem. 

3. Proof of the Recurrence Theorem. Assume the contrary: 
There is a measurable set E and a number X < 1 such that 

(*) KE-TtE)<UKE)y 

on arbitrarily large /-intervals. Let I\ be a closed interval on 
which (*) holds; denote by 2l\ its length and by h its center. 
There is an interval I2 on which (*) holds and which has a length 
> 2 ( / i + I h\ )• Denote by /3 the center of 1% and by 73 an interval 
on which (*) holds and which has a length >2(Zi+ | / 2 | + | ^ | ) , 
and so forth. Then the numbers lk — h, (i<k), belong to the 
intervals /&_»; hence for any i and k, (i<k), 

rtE-Ti^E) <X(M(£))2 , 

and consequently 

n(TtiE-TltE) < X ( M ( £ ) ) 2 

in contradiction to the theorem of §2, applied to the sequence 
TixE, Ti2E, • • • . This proves the recurrence theorem. 

It will be seen that it is not essential that t in Tt is a continu­
ous parameter. The same method gives the same result in the 
case that / only runs through the values 0, ± 1, ± 2, • • • . 
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4. Remark. Let the sequence E±, £2 , • • • be as in §2. Then we 
can even assert that f or every X<1 there exists an infinite subse­
quence Eiv Ei2, • • • such that for every p and a 

»(EipEiq) ^ Am2. 

We show first that there exists an infinite subsequence 
Ekv Ek2, - • • such that /Jt(Ekv Ekp) ^\m2 for every p. Suppose 
that no such subsequence exists; then to every w = l, 2, • • • 
belongs a pn such that 

fx(EnEm) < Am2 for m ^ n + pn. 

Writing Wi=l, n<L — n\-\-pnv ns = n2-\rpn2i • • • , we have then for 
every i and k, 

lx(En.Enk) < Aw2, 

which contradicts the theorem of §2. The proof is now easily 
completed by applying the diagonal principle. 

CAMBRIDGE, MASSACHUSETTS 

ON T H E ZEROS OF T H E DERIVATIVE OF A 
RATIONAL FUNCTION* 

BY MORRIS MARDEN 

1. Introduction. The primary object of this note is to give a 
simple solution of a problem already discussed by many authors 
including the present one. f It is the problem of determining the 
regions within which lie the zeros of the derivative of a rational 
function when the zeros and poles of the function lie in pre­
scribed circular regions. 

THEOREM l .J Forj = Q, 1, • • • , p let r^ and a3- be real constants 

* Presented to the Society, September 4, 1934. 
f For an expository account and list of references see M. Marden, American 

Mathematical Monthly, vol. 42 (1935), pp. 277-286, hereafter referred to as 
Marden I. 

Î See M. Marden, Transactions of this Society, vol. 32 (1930), pp. 81-109, 
hereafter referred to as Marden I I . 


