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ON CERTAIN TWO-POINT EXPANSIONS OF 
INTEGRAL FUNCTIONS OF 

EXPONENTIAL T Y P E 

BY I. J. SCHOENBERG 

1. Introduction. Hillel Poritsky* and G. J. Lidstonef found 
the following formal expansion 

(1) ƒ(*) = Ê /<*»>(1)A,(*) - £f™(P)A»(* - 1), 

where An(x) are polynomials (of degree 2n + l) defined by the 
generating function 

00 

sinh xt cosech t = ^ t2nAn(x). 
n=0 

Expansion (1) holds for any polynomial ƒ (x) and solves formally 
the interpolation problem 

(2) / ( « ( I ) = an, ƒ(*»>(<)) = 6n, (n ^ 0). 

An integral function ƒ(x) is said to be of exponential type if 
the quantity 

log Mir) 
(3) y (f) = lim , 

f-»oo f 

which is called the type of the f unction ƒ (#), is finite, M(r) de­
noting the maximum modulus of f(x) on the circle \x\ =r. 

Poritsky and J. M. Whit takerî proved that the expansion (1) 

* Hillel Poritsky, On certain polynomial and other approximations to analytic 
functions, Transactions of this Society, vol. 34 (1932), pp. 274-331. 

f G. J. Lidstone, Notes on the extension of Aitken's theorem {for polynomial 
interpolation) to the Everett types, Proceedings Edinburgh Mathematical So­
ciety, vol. 2 (1930), pp. 16-19. 

% J. M. Whittaker, On Lidstone's séries and two-point expansions of analytic 
functions, Proceedings London Mathematical Society, vol. 36 (1933-34), pp. 
451-469. In order to facilitate reference we use throughout Whittaker's nota­
tions. 
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is valid in the finite plane for all integral functions of type 

(4) y (J) < 7T. 

Whittaker investigated also the interpolation problem 

(5) /<«*>(1) = a», f<2^>(0) = 6n, (n è 0), 

which is solved formally by the "generalized Abel expansion"* 

(6) ƒ(*) = Z P«\\)Mn{x) - i : / ( 2 w + 1 ) (0)M n '+ 1 ( l - x), 

where the polynomials Mn(x) (of degree In) are defined by the 
generating function 

00 

cosh xt sech / = ^ tnMn(x). 

Whittaker showed that the expansion (6) is valid in the finite 
plane for all integral functions of type 

(7) 7(/) < ~ 

The consideration of the functions sin wx and cos wx/2 shows 
that 7T and T/2 are the best constants on the right sides of the 
inequalities (4) and (7), respectively, for these functions are re­
spectively solutions of the systems (8) and (10) below. 

Our present purpose is to solve the unicity questions con­
nected with the interpolation problems (2) and (5) for functions 
of exponential type. They are answered completely by the fol­
lowing theorems, f 

*See W. Goncharoff, Annales École Normale, vol. 47 (1930), pp. 1-78; 
also I. J. Schoenberg, On the zeros of successive derivatives of integral functions, 
to appear in the Transactions of this Society. 

t It is of interest to mention here a theorem of F . Carlson which, in very 
restricted form, is as follows: An integral function f(x) of type y(J)<w which 
satisfies the system 

(C) / 0 0 - O , ( » - 0 , 1, 2, • • • ) , 

must vanish identically (see, for example, E. C. Titchmarsh, Theory of Func­
tions, 1932, p. 186). Here there is no analog to Theorem 1 about the solutions 
of (C) of exponential type, for <f>(x) sin TTX, with an arbitrary integral function 
4>(x), is a solution of (C). Hence such solutions can be of an arbitrary finite 
type. 
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THEOREM 1. The only functions of exponential type satisfying 
the system 

(8) / ( 2 n ) ( l ) = 0, f<2n>(0) = 0 , (» è 0), 

are the finite sine polynomials 

k 

(9) f(x) = ^2 cp sin VTX, (of type kir), 

with arbitrary constant coefficients cv. 

THEOREM 2. The only functions of exponential type satisfying 
the system 

(10) f (2n)(l) = 0, /<2»+»(0) = 0 , (» è 0), 

ö^e the finite cosine polynomials of the form 

^ (2v + 1)TT 

(11) f(x) = 22cv cos x, (of type (2k + l)ir/2). 
v=o 2 

From Poritsky's and Whittaker's results (4) and (7), it fol­
lows only that solutions of (8) and (10) must vanish identically 
if they are of types less than ir and 7r/2, respectively.* 

2. Proofs of Theorems 1 and 2. We shall use the following 
lemma of R. D. Carmichael.f 

Let f(x) be of exponential type not exceeding y and let it have 
the period co(>0). Let m= [YCO/2X] denote the greatest integer not 
exceeding yœ/2w. Then f(x) has the form 

m 

(12) ƒ(*) = £ ƒ,*»-*«'•, 

where the f v s are constants. 

* For a similar extension of a kindred result see A. Weinstein, Zum Phrag-
mên-Lindelófschen Ideenkreis, Abhandlungen M athematisch es Seminar, Ham­
burg, vol. 6 (1928), pp. 263-264. 

t R. D. Carmichael, Summation of functions of a complex variable, Annals 
of Mathematics, (2), vol. 34 (1933), pp. 349-378, Theorem 2.4 on p. 362. A 
proof, omitted by Carmichael, is readily supplied by means of the Fourier ex­
pansion of f(x), /(n)(#)> their Parseval relations, and Carmichael's Theorem 2.1, 
p. 361. 



1936.] FUNCTIONS OF EXPONENTIAL TYPE 287 

Let ƒ (x) be a solution of (8) of finite type ; then ƒ (x) is nec­
essarily an odd function of period 2. For the equations (8) 
show that ƒ(x) is odd about the points x = 0 and x = l, whence 
f(x) = — ƒ( — x) =f(x + 2). Applying Carmichael's lemma, for 
co = 2, we find that ƒ(x) has the form (9), for the cosine terms 
drop out since f(x) is odd. 

To prove Theorem 2 let us assume that f(x) is a solution 
of (10) of finite type; then f(x) is necessarily an even function 
of period 4. For the equations (10) show that f(x) is even 
about the point x = 0 and odd about the point x = l, whence 
ƒ(#) = ƒ ( - * ) = -f(x + 2) = -f(-x-2) = / ( * + 4 ) . Carmichael's 
lemma, for co = 4 , shows that fix) is of the form 

A 7TJ> 
(13) f(x) = 2 ^ dv cos — x, 

v=o 2 

the sine terms having dropped out since f{x) is even. Notice 
that ƒ(#), as defined by (13), always satisfies the second of the 
equations (10); it also satisfies the first equation (10) pro­
vided 

[m/2] 

(14) /<2n)(l) = ( - l)n7T2» £ ( - l ) ^ r i 2 n = 0, 

(« = 0 , 1 , 2 , . . . ) . 

The first [ra/2] + l equations of the system (14), regarded as a 
homogeneous system of linear equations in the d2/, suffice al­
ready to show that d2i = 0, 0 = 0, 1, • • -, [m/2]). Hence (13) re­
duces to the form (11). 

3. On Whittaker's Solution of the Interpolation Problem (2). 
In order to find integral solutions of (2), Whittaker proceeds 
essentially as follows (loc. cit., Theorem 3, p. 457). Let 

(15) k(x) = Ê - £ - (* - l)2», g(x) = Z - ^ - ^ , 
„-0 (2»)l „=o (2»)1 

and assume that these are integral functions. Let H(x) and G(x) 
be integral solutions of the difference equations 

H(x + 2) - H(x) = 2h(x + 2), 
( 1 6 ) G(* + 2 ) -G(« ) = -2g(x), 
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respectively. Then 

(17) f(x) = — [H(x) - H(- x) +G(x) - G ( 2 - x)} 

is an integral function satisfying (1). The proof is immediate, 
for (15), (16), and (17) imply 

(18) ƒ(*) + f(2 -x) = 2h(x), f(x) + ƒ ( - x) = 2g(x), 

and these equations are equivalent with the system (2), in view 
of (15). 

If (2) is to have solutions/(x) of exponential type, then h(x) 
and g(x) must be of such type, as seen from (18). If 

q = max {y(h)9 y(g)}, 

it is known that equations (16) have solutions H(x), G{x) of type 
not exceeding q, and then ƒ(x), as defined by (17), is a solution 
of (2) of type y(f) =q. From Theorem 1 we know that all solu­
tions of (2) which are of exponential type are obtained by add­
ing to f(x) an arbitrary sine polynomial of the form (9). 

Carmichael has given very convenient expansions for the 
"principal sums" H(x) and G(x) (loc. cit., Theorem 2.5, p. 365). 
Introducing these expansions in formula (17), we get a two-
point expansion of ƒ (x) (that is, in terms of / ( 2 r i )(l) and / ( 2 n )(0)) , 
provided the type q of f(x) is finite, whereas the Poritsky-
Lidstone expansion (1) breaks down in general if q^ir. Similar 
remarks apply to the interpolation problem (5). 
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