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A T H E O R E M IN T H E THEORY OF SUMMABILITY 

BY J. D. HILL 

1. Introduction. Knopp* has developed a general integral 
form for linear methods of summability which includes as spe­
cial cases all such methods which to date have found any con­
siderable application. He establishes sufficient conditions for the 
regularity of his method but does not completely treat the ques­
tion of their necessity. I t may be of interest to observe that if 
Knopp's integral is interpreted in the sense of Lebesgue one may 
readily construct an example of his method which is regular in 
the class of bounded, measurable functions, but which does not 
satisfy condition (b)t of his regularity theorem. In conformity 
with Knopp's notation, let the curves (£*, S y be taken as the 
real axes 0 ^ x < o o , 0^y<oo} respectively. Denote by (31) the 
class of all complex functions f(x)^fi(x)+if2(x) defined on (&x 

such that fi(x), fz(x) are bounded and measurable on the inter­
val O^x^X for every X > 0 , and such that limx^00f(x)=Lf 

exists. Finally, let the function K(x, y) be defined as ( —1)?' 
for n-\Sy<n, (» = 1, 2, 3, • • • ), (j-l)/2n^x<j/2n, 
C/ = l, 2, • • • , 2n); as l/(y + l) for l^x^y + 1, 0^y<oo; 
and as zero forO^;y<x— 1, 1 <x< 00. Then for every ƒ (x) c (31), 
g(y) =fv

Q K(x, y)f(x)dx clearly exists on fëy, and we have 

ƒ» 1 /» v+i \ 

K(x, y)f(x)dx + I — — f(x)dx, 
0 J1 y+± 

where the second integral tends to Lf as y—><*>, since the func­
tion 1/(3/ + 1 ) satisfies the conditions of Knopp's regularity theo­
rem. Moreover, given e>0 , there exist step-functions Sj(x) such 
that fQ \fj(x) —s?(x) I dx <e , (j = 1, 2). Consequently, in view of 
\K(x, y)\ ^ 1 , we have 

* Knopp, Zur Theorie der Limitierungsverfahren, Mathematische Zeit-
schrift, vol. 31 (1929-30), pp. 97-127. To save space we assume that the reader 
is familiar with this paper. 

t Loc. cit., p. 101. 
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I K(x} y)f(x)dx = I K(x, y)si(x)d 

I K(x, y)s2(x 
J o 

+ I K(x, y)s2{x)dx + 2e; 

S\(x), Sz(x) being step-functions, the two integrals on the right 
tend to zero as 3/—»oo. Hence \\my^g{y)=Lf and K(x, y) de­
fines a regular method in the class (31). On the other hand, 
/01 K(x, y) I dx does not tend to zero as 3/—»00 , so that condition 
(b) in this case is not fulfilled. 

This fact leads us to consider a slight modification of Knopp's 
method, based on the Lebesgue integral, for which it is possible 
to state conditions necessary as well as sufficient for regularity 
in the class of functions defined below. Aside from specifying 
the type of integral used, the modification consists mainly in 
dispensing with the curves (£*, (£„ and directing attention to the 
real and imaginary parts of the complex functions with which 
we are concerned. 

2. K-Method of Summability. Let (33) denote the class of all 
complex functions ƒ(x) =fi(x)+if2(x) defined on the interval 
/ = = ( 0 ^ x < £ ) , £ ^ ° ° , such that (i) fi(x), f2(x) are measurable on 
the sub-interval O^x^X for every X, 0 < X < £ , (ii) | / (* ) | is 
essentially bounded on ƒ, and (iii) f(x) tends to a limit Lf as x—>£ 
on I. Let K(x, y) = Ki(x} y) +iK2(x, y) be an arbitrary complex 
function defined on the intervals / and J=(0^y<rj)y rjS00. 
We shall say that K(x, y) defines a regular method of summa­
bility in the class (93) if for every f(x) c (93) the integral 

Uy(f) = f K(x, y)f(x)dx 
J 0 

= lim I [Ki(x, y)fi(x) — K2(x, y)f2(x)]dx 
x->€ Jo 

+ f lim I [Ki(x, y)f2(x) + K2(x, y)fi(x)]dx 
*->£ Jo 

exists on / , and if Uy(f) tends to a limit equal to Lf as y—*rj on J. 
For brevity, the process of summability so defined will be called 
a X-method. 
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THEOREM. For the regularity of a K-method in the class (33) 
it is necessary and sufficient that (a) f^K(x, y)dx exist on J and 
tend to 1 as y—>r] on J; (b) fHK(x, y)dx—>0 as y-*rj on J , for 
every measurable set H on I not having £ as a limit point; (c) 
f*\K(x, y) I dx exist on J, and that constants M and Y exist such 
that this integral is bounded by M f or Y<y<rj. 

PROOF. Necessity. Since the function g(x) = 1 o n / belongs to 
3} with Lg = 1, the necessity of (a) is apparent. Moreover, if h(x) 
is the characteristic function of any set H of the type described 
in (b), then h(x) c (93) with Lh = 0] thus (b) is necessary. To 
establish (c) we observe first that the existence of f^K(x, y)dx 
implies that Jf\K\{x, y)\dx, ff\K%(x, y)\dx both exist, from 
which the existence of ff\K(Xj y)\dx follows for y on J and 
0 < X < £ . Suppose now, contrary to the first part of (c), 
that for some value of y, say y0, we have ƒ* \K(x, yo) \dx 
= l i m x ^ / f I K(x, yo)\dx= co . Then there exists on ƒ a sequence 
{Xj} tending to £, such that 

I I K(x, y0) I dx > j , (j = 1, 2, 3, • • • ; x0 = 0). 

If we define k(x) for x/_i = #<Xj, (J = 1, 2, 3, • • • ), as zero if 
K(x, 3;o)=0, and as [Ki(x, y0)-iK2(x, y0)]/(j\K(x, yQ)\) if 
K(x} yo)^0, then k(x) c (93), whereas, for w = l, 2, 3, • • • , 

K(xy yQ)k(x)dx = 52 -7 I I K(x, yQ) \ dx > n, 
0 y=i j J Xj_x 

so that UVo(k) does not exist. This contradiction proves the 
first part of (c). To establish the second part we first define 
ess.sup.o^aj<{|/(aO| as the greatest lower bound of all numbers 
C for which \f(x) | ^ C almost everywhere. Then by introduc­
ing the functional ||/|| =ess.sup.0^<s| f(x) | as the norm, one may 
verify that (53) becomes a Banach space and that Uy{f), for each 
fixed y on / , is a linear operation in this space. Now choose X 
arbitrarily, 0 < X < £ , and define fy{x) for O^x^X as 1 if 
K(x, 30=0, as [Ki(x, y)-iK%(x, y)]/\K(x, y)\ if K(x, y)^0, 
and for X <x < £ as zero. For each value of y we have fy(x) c (93) 
with | | A | | = 1 . Hence we obtain Uy(fy)=ff\K(x, y)\dx 
^ I! Uy\\ • ||/„|| = || Uv\\, from which it follows that 
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(1) f | K(x, y)\dx£ || Uv\\ for y on J, 
J o 

since X was arbitrary. Let s^{yn} be any sequence on / tend­
ing to rj. By the assumed regularity, the sequence { UVn(f)} con­
verges for every ƒ c (S3), and hence by a theorem of Banach* 
there exists a number N, depending on s, such that || UVn\\ ^N 
for » = 1, 2, 3 , - - - . From this fact we infer the existence of 
numbers M and F such that || Uy\\ S M for Y<y<r], which, by 
virtue of (1), completes the proof of necessity. 

Sufficiency. Assuming that K(x, y) satisfies (a), (b), and (c), 
it is clear first of all that Uy(J) exists on J for every ƒ c (25). Now 
choose f(x) c (25) arbitrarily and set f(x) =L/+r(x), where, ac­
cordingly, r(*)c(5B) with L r = 0. Then UV(J) = Uy(Lf)+Uy(r) 
and since by condition (a), Uy{Lf)—>Lf as y—>rj on / , it remains 
only to show that Uy(r)—»0. To this end let e > 0 be given; then 
a number Xo(e) exists, 0<Xo<£, such that 

(2) | r(x) | ^ (2)1/2e/(12M) for x0 < x < £. 

Furthermore, if r(x)^ri(x)+ir2(x)y there exist functions Rj(x) 
of the form i?3(x) ^2n=1anjhn(x)} where the anj are real numbers 
and the hn(x) are the characteristic functions of certain measur­
able sets Hn on the interval (0, XQ), such that 

(3) | r j(x) - Rj(x) | ̂  (2)l'2e/(12M) almost everywhere on (0, s0), 

when 7 = 1 or 2. Setting R(x)z=Ri(x)+iR2(x), we may write 

#v( r) - Z) (am + ia>n%) I K(x, y)dx 

K(x, y)[r(x) — R(x)]dx + I K(x, y)r(x)dx. 
o J x0 

By condition (b) a number F0(e) exists, F ^ F0<7/, such that 
the first term on the right does not exceed e/3 in absolute value 
for Y0<y <rj. Finally, making use of (2), (3), and condition (c), 
one readily shows that the remaining integrals are each numeri­
ca l ly^ e/3 for Yo<y<rj. Hence | Uy(r)\ ^ e f o r Yo<y<r), which 
completes the proof of the theorem. 
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* Banach, Théorie des Opérations Linéaires, p. 80, Théorème 5. 


