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BROWN AND SHOOK—PLANETARY THEORY 

Planetary Theory. By E. W. Brown and C. A. Shook. Cambridge, University 
Press, 1933.xii+229pp. 

The reviewer's lot is not "a 'appy one". He is expected to give in a brief 
measure of time and space a critical examination of a treatise covering several 
hundred pages and representing many years of investigation by renowned 
authors. And above all he is expected to make some contribution to the errata 
of the text! Realizing the un'appiness of the lot before him, the reviewer pro­
ceeds with much appreciation and with no little trepidation in an effort to 
summarize rather than to examine critically. And he has no contribution to 
make to the errata! The text already contains a page of such, contributed by 
experts, and that is sufficient for any volume. 

When William Thomson (afterwards Lord Kelvin) and his older brother 
James accompanied their father on a summer tour through Germany, it is re^ 
corded that William, then 16 years of age, took Fourier's famous Analytical 
Theory of Heat for light reading. The reviewer does not recommend Planetary 
Theory for any such journey except possibly to those with Kelvin's I.Q. 

"The purpose of the volume", as stated by the authors, "is the development 
of methods for the calculation of the general orbit of a planet". It does not 
aim to be a substitute for a treatise like Tisserand's or Laplace's nor does it 
contain detailed accounts of such classical theories as are to be found in New-
comb or elsewhere. 

The mathematical processes are largely formal. Rigor is desirable when at­
tainable, but results are much more to be desired (compare Proverbs on a good 
name and riches), particularly when the results appear to be reasonable and 
"useful for the prediction of physical phenomena". 

Considerable portions of the volume are new, particularly the work on 
resonance and the Trojan asteroids. 

Various forms of the equations of motion are derived in Chapter 1. For the 
development of planetary theory the osculating plane possesses certain advan­
tages as a principal plane of reference. It is the plane passing through the sun 
and tangent to the orbit of the planet. Its motion, being either slow or small, 
affects the motion of the planet in a way which can be quite simply accounted 
for or neglected entirely. Two systems of coordinates may be used with the 
osculating plane as the principal plane of reference. Three variables are used 
in one system and six in the other. In the latter case the variables are the ele­
ments of the osculating ellipse. Polar coordinates are next used. The equations 
are then put into canonical form and also derived first with the true orbital 
longitude and later with the disturbed eccentric anomaly as the independent 
variable. The chapter concludes with the derivation of the equations of motion 
referred to the coordinates of the disturbing planet and also to any arbitrary 
plane of reference. 

Devices are treated in Chapter 2 to simplify the expansions of various 
functions into sums of periodic terms. Lagrange's well known theorem for the 
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expansion of a function defined by an implicit equation is considered and ex­
tended to three variables. Fourier series, functions of Fourier series, Bessel 
functions of the first kind, and hypergeometric series are next treated. The 
chapter concludes in an encouraging way with devices to relieve fatigue in 
calculation with slowly converging series. 

The third chapter deals with elliptic motion in which the eccentricities are 
sufficiently small for numerical calculation without too much labor. Instead 
of using the three anomalies directly, namely, the true, the eccentric, and the 
mean, which are denoted by/ , X, and g, respectively, use is made of 

0 = &, x = e{f, $ = efi, i = V~~l. 

Fourier developments are obtained for the radius or powers of the radius in 
terms of </>, x, ^, and also ƒ and g. In certain of these expansions Bessel functions 
or hypergeometric series occur. The chapter concludes with certain detailed 
developments for g, ƒ, r to be used for reference, and with numerical develop­
ments by harmonic analysis. 

Chapter 4 deals with the development of the disturbing function, R. When 
the angle, I, between the orbital planes of the two planets is zero and the ec­
centricities e, e' are so small that they can be neglected, R can readily be ex­
panded as a Fourier series in the coefficients of which occur powers of a = a/a'f 
a, a' being the mean distances of the planets from the sun. When e, e', I are 
not neglected, R can be expanded in powers of these parameters, and these 
expansions converge rapidly as e, e', / a re usually small. Difficulty occurs, how­
ever, when through integrations small denominators arise sometimes involving 
discontinuities. 

In the older methods the time is used as the independent variable, which re­
quires the disturbing function to be expressed in terms of the three anomalies. 
The methods developed in this chapter involve the theorem 

d 
F(p,x) =pDF(x), D = xT, 

ax 

where F is expansible in integral powers of its argument, and pD is expansible 
in positive integral powers of D. By the use of this theorem, expansions for the 
distances between the planets are obtained in powers of the eccentricities 
and multiples of the true anomalies; and also in powers of the inclination and 
multiples of the true anomalies. Transformations are then made to obtain 
similar developments in multiples of the mean anomalies. To obtain the devel­
opment in terms of the eccentric anomalies use is made of a hypergeometric 
series in which certain of the elements are linear functions of the symbolic 
operators D, B, B', where 

d d , , a 
D = a - , B = x~> * - X ' T - 7 -da ox «x 

Newcomb gave a somewhat similar expansion in terms of the eccentric anom­
alies of which certain portions were carried out to the seventh order with 
respect to the eccentricities, but he did not obtain a general formula like the 
one developed here which permits any coefficient to be written down at once. 
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The chapter ends with certain devices to abbreviate and to check the com­
putation. For example, it is shown that after transformations have been made 
so as to calculate easily and readily two coefficients in a series, all the remain­
ing coefficients and their derivatives can be deduced from these two by the 
use of finite formulas. 

The fifth chapter contains the elements of the theory of canonical variables 
so far as it is needed in the later work. New symbols d, 8 are suitably defined, 
and on making use of them the equations 

^i^^El dyj ^ _dHi ' « 1 2 • • • ^ 
dt dyi dt dx{ 

can be expressed in the form 

22 (dxi hyi — dyi dxi) = dtbH. 
i 

The Jacobian transformation can then readily be made from one set of vari­
ables to another set. It is shown that a general solution of the canonical equa­
tions written above is provided by the equations 

dS dS 

y. Œ , p. « , 
dxi dqt 

where pi and q% are arbitrary constants and S is an integral of the partial differ­
ential equation 

„ / dS \ , as „ 
V ' da*' J dt 

Applications are made showing various sets of canonical elements of elliptic 
motion. 

In Chapter 6 it is shown how the theory of canonical equations can be 
applied to the calculation of the orbit of a planet. "All the methods depend 
fundamentally on the assumption that the variables differ from constants by 
amounts which have as factor the ratio of the disturbing mass to that of the 
primary, and therefore tha t the variables may be developed in powers of this 
ratio." Delaunay's method is adopted, namely, to obtain a change of variables 
such that the new variables are more nearly constant than the old ones. The 
main difference is that while Delaunay made numerous changes, the present 
authors show that , in general, one change is sufficient for the solution of the 
majority of planetary problems. "Much of the discussion in the chapter hinges 
on the amount of labour which the development and solution of the equations 
for the new variables require." 

It is first shown how the work may be so adapted that use can be made of 
the developments for R in Chapter 4 which are not in terms of canonical ele­
ments. The disturbing function is then split up into two parts R~Rt-\-RCl and 
when these are suitably defined, differential equations are obtained which 
have the same form as the original equations except that the terms in Rt have 
disappeared. Two choices for the division of R are made. In one Rc contains 
only those terms which produce the so-called secular motion of the elements. 
In the other, Rt contains the short period terms only while Re contains the 
long period and secular terms. It is assumed that Rc is expansible in powers of 
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m', the mass of the disturbing planet, and the solutions of the above-mentioned 
differential equations are readily obtained to the first degree of approximation. 
These solutions are called the perturbations of the elements. The secular, periodic, 
and long-period terms in the first approximation are next considered. 

In the calculation of the values of the variables to the second degree of ap­
proximation, special attention is given to discover what classes of terms will 
give sensible changes to the expressions found in the first approximations. 

At the conclusion of the chapter the advantages and disadvantages of the 
theory which has been developed are pointed out. It has a "simplicity of ana­
lytical form" which makes it attractive for many theoretical investigations, 
particularly those concerned with resonance, but because of the labor involved 
and the slow convergence of certain series, it is doubtful if it is the most con­
venient for the calculation of ordinary planetary perturbations. 

The direct calculation of the coordinates is developed in Chapter 7 with 
the true orbital longitude as the independent variable. The solutions of the 
equations of motion are obtained by continued approximation. The first ap­
proximation with m'=0 gives elliptic motion and the solution thus found is 
called the elliptic approximation. To obtain the next approximation, called the 
first approximation, the expressions found for the elliptic approximation are 
substituted in the terms having m' as a factor and the resulting equations are 
solved, giving the second approximation. Higher approximations can be ob­
tained by continuing the process, but it is rarely necessary in planetary prob­
lems to proceed beyond the first approximation except for those terms which 
on account of their long periods have received small denominators through 
integration. 

After the first approximations are obtained the "equations for the variation 
of the elements" are considered before the second approximations are treated. 
In the variation of the elements three new variables are introduced for two of 
the old variables. This procedure gives equations more convenient for calcula­
tion and furnishes an important theorem concerning the secular terms. In this 
way separate calculations can be made of the effects due to the secular terms 
and to the periodic terms in the first approximations. So as to compare the 
theory developed in this chapter with other theories, particularly the theory 
developed by Hansen, a transformation to the time as the independent variable 
is made. Approximate formulas for the perturbations, final definitions, and 
the determination of the constants conclude the chapter. 

"Chapter 8 contains an attempt to place the theory of resonance on a 
general basis in a form which permits of application to specific problems. It 
appears to give a method of approach to the consideration of the question of 
general stability of the orbits of the planets." 

Resonance is defined as a case of motion in which a particle or body, moving 
or capable of moving with periodic motion, is acted on by an external force 
whose period is the same as that of the motion of the body. The usual illus­
tration is the equation 

d*x , • 
-— + n2x = m sin nt, 

dt 

which yields a Poisson term in t explicitly when n'' = ». It is pointed out, how-



1935-1 BROWN AND SHOOK—PLANETARY THEORY 467 

ever, that the illustration is defective inasmuch as the particular integral has 
a very large coefficient when n' is near n. Further, in actual mechanical prob­
lems, x does not always occur linearly and, in addition, it is sometimes present 
in the expression for the disturbing forces. 

In order to illustrate the principal features of certain of the resonance prob­
lems, use is made of the motion of a pendulum which can make complete revo­
lutions about a horizontal axis as well as oscillate about the vertical and which 
is disturbed by a periodic force. In certain cases, however, the analogy breaks 
down and special devices have to be employed to find out whether resonance 
is possible. The general case of resonance in the perturbation problem is next 
considered, and while the investigation given does not prove the existence of 
resonance it at least shows that so far no condition preventing it has appeared. 
The chapter concludes with a method of procedure applicable to certain of the 
actual cases of resonance in the solar system, particularly in the case of the 
asteroids disturbed by Jupiter and Saturn. 

Chapter 9 is devoted to a consideration of the motion of the Trojan group 
of asteroids. These are two groups which are to be found at the vertices of the 
equilateral triangles described on the line joining the sun and Jupiter as base 
and in the plane of Jupiter's orbit. They oscillate about these triangular points 
of libration in much the same way as their mythological namesakes circulated 
about the walls of ancient Troy. The libration points themselves were first 
discovered by Lagrange in 1772 and were considered by him as "pure curiosi­
ties". The first asteroid in the group was discovered in 1901 and the last one, 
the tenth, in 1932. 

The development in this chapter is much the same as that used in Chapter 6. 
The disturbing function R is expressed in powers of the eccentricities and mu­
tual inclination. New variables are then introduced which leave the equations 
of motion canonical and at the same time eliminate the short period terms from 
R. Solutions for these variables are then obtained in terms of the time. 

Finally, the perturbations due to Saturn are considered. In the ordinary 
planetary theory the procedure would consist in finding the perturbations due 
to each planet separately, then those due to their combined action, and adding 
the results. This method is not applicable in this case, however, inasmuch as 
the action of Jupiter cannot be neglected even in finding a first approximation 
of the direct action of Saturn. It is assumed that the mutual perturbations of 
Jupiter and Saturn on each other are completely known. Hence, when con­
sidering the direct effect of Jupiter upon the asteroid, the indirect effect of 
Saturn in causing Jupiter to deviate from elliptic motion must also be taken 
into account, and likewise the indirect effect of Jupiter upon Saturn. It is 
shown that Jupiter so alters the direct effect of Saturn upon the asteroid that 
by far the largest part of the action of Saturn is indirectly through its pertur­
bation on Jupiter. 

The appendix on Harmonic Analysis contains formulas for application to 
the development of a given function in a form ready for actual use. 
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