A NEW SOLUTION OF THE GAUSS PROBLEM ON $h(s^2d)/h(d)^*$

BY GORDON PALL

The following demonstration of the well known formula

(1)
$$h(p^2d') = \sigma^{-1} \{ p - (d' \mid p) \} h(d')$$

may be worth noting. Here $h(\Delta)$ denotes the number of classes of primitive integral binary quadratic forms of non-zero discriminant Δ ; p is any prime ≥ 2 ; $\sigma = 1$ if d' < -4 or d' is a square, $\sigma = 2$ if d' = -4, $\sigma = 3$ if d' = -3; and if d' is positive but not square, σ is the least positive integer for which $p \mid u_{\sigma}$, (t_k, u_k) denoting the successive positive integral solutions of $t^2 - d'u^2 = 4$.

Let r(n) denote the number of sets of representations of n by a representative system of primitive forms of discriminant $d = p^2d'$. If q is a prime such that $(d \mid q) = 1$,

(2)
$$r(p^2q) = 2\{p - (d' | p)\}.$$

For by II (5), (33), (23)–(24),†

$$r(p^2q) = r(p^2)r(q) = 2r(p^2) = 2\{1 + r'(p^2)\},$$

where $r'(p^2)$ equals the number p-1-(d'|p) of solutions w of

$$(pw)^2 \equiv p^2 d' \pmod{4p^2}, \quad \frac{w^2 - d'}{4} \text{ prime to } p, \ (0 \le pw < 2p^2).$$

By Theorem 4 of I, extended to d>0 in II, there is associated with each class (connoted by K, say) of primitive forms f of discriminant p^2d' , a unique ambiguous class C, or two non-ambiguous classes C and C^{-1} , of primitive forms g of discriminant d'; C is characterized as representing any prime represented by K. By II (13), such forms satisfy, for all integers n,

$$(3) f(p^2n) = \sigma g(n).$$

^{*} Presented to the Society, April 6, 1935.

[†] References are to the writer's two papers: I, Mathematische Zeitschrift, vol. 36 (1933), pp. 321-343; and II, Transactions of this Society, vol. 35 (1933), pp. 491-509.

Choose n to be a prime q represented by C and prime to d. Then g(q)=2 if C is ambiguous, g(q)=1 if $C\neq C^{-1}$. If a form f_1 is associated with a form g_1 not in C or C^{-1} , $f_1(p^2q)=\sigma g_1(q)=0$. Hence, by (2) and (3), p^2q is represented in exactly $\eta\left\{p-(d'\mid p)\right\}\sigma^{-1}$ classes K, where η is 1 or 2 according as q is represented in only one (ambiguous) or two (reciprocal) primitive classes of discriminant d'.

McGill University

ON A REDUCTION OF A MATRIX BY THE GROUP OF MATRICES COMMUTATIVE WITH A GIVEN MATRIX*

BY P. L. TRUMP

1. Introduction. Two $n \times n$ matrices A and B, with elements in any field F, are said to be similar in F if there exists a non-singular $n \times n$ matrix S, with elements in F, such that $S^{-1}AS = B$.

Ingraham \dagger has given a method for finding the most general solution, with elements in F, of the matrix equation

$$P(X) = A,$$

where P(X) is a polynomial with coefficients in F, and A is a square matrix with elements in F. A certain set of dissimilar solutions X_1, X_2, \cdots, X_k were obtained in terms of which the complete system of solutions was seen to be in the form $S^{-1}X_iS$, where S is commutative with A. The X_i 's are obviously commutative with A.

The purpose of this investigation is to determine the conditions under which two $n \times n$ matrices C and D are similar under transformations of the group [S] of non-singular matrices S which are commutative with a certain $n \times n$ matrix A, where the matrices C and D are also commutative with A. We then seek to describe possible canonical forms to which such matrices

^{*} Presented to the Society, September 4, 1934. This paper with proofs and detail that are omitted here, is on file as a doctor's thesis at the Library of the University of Wisconsin.

[†] On the rational solutions of the matrix equation P(X) = A, Journal of Mathematics and Physics, vol. 13 (1934), pp. 46-50.