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THEOREM 4. If the boundary I' of the plane bounded connected
and simply connected domain vy contains an indecomposable con-
tinuum D, there is a prime end of v which contains D.

Here, as in the development of Theorem 2, for each value of
j the set I'=)_I';;. Consequently > T';io D. If for each of these
¢(T;)-D > D, then the set ) I';i- D is nowhere dense in D and
[T';:] does not cover D. But as none of [I';;] can have ¢(T';;)-D
$ D unless D-¢(I';;) =0, in view of Lemma 4, there must for
every value of j be one of [I';;] which contains D. The proof
now follows lines almost identical with those of Theorem 2.

NORTHWESTERN UNIVERSITY

PROJECTIVE DIFFERENTIAL GEOMETRY
OF CURVES

BY L. R. WILCOX

In a fundamental paper* on the projective differential geom-
etry of curves, L. Berzolari obtained canonical expansions repre-
senting a curve C immersed in a linear space .S, in a neighbor-
hood of one of its points P,. The vertices of the coordinate
simplex yielding Berzolari’s canonical form are covariantly re-
lated to the curve, while the unit point may be any point of the
rational normal curve I' which osculates C at P,. It is the purpose
of the present paper to define a covariant point on I' which can
be chosen as a unit point so as to produce final canonicalization
of the power series expansions of Berzolari.

It will be observed that the usual methods of defining a point
on T for the cases =2 and #=3 depend on configurationsf
that do not possess suitable analogs in #n-space. Hence it ap-
peared for some time that the problem called for different pro-
cedures in spaces of different dimensionality. Special devices

* L. Berzolari, Sugli invarianti differenziali proiettivi delle curve di un
iperspazio, Annali di Matematica, (2), vol. 26 (1897), pp. 1-58.

t E. P. Lane, Projective Differential Geometry of Curves and Surfaces, pp.
12-27.
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were found by S. B. Murray and the author* for the spaces S,
and S;; however, like the methods used in the plane and in S;
these seem not to admit generalization. It is to be shown here
that, with the help of a suitably chosen linear complex, the
general problem for # >3 may be solved.

Local power series expansions representing an analytic curve
C immersed in a linear space S, of # dimensions (#>3) in a
neighborhood of an ordinary point P, may be writtent in the
form,

(1) Xy = 1,
Xy = xli —I— aian+3 + bixfl+4 —I—- cee (i = 2’ e, n),
wherein xq, - - -, x, are homogeneous projective point coordi-

nates, and the coefficients a;, b;, etc. are complex numbers, @1
being zero and @, different from zero. The equations of the
osculating rational normal curve I' of C at Py are

® = a, (1=0,---,mn).

The vertices of the coordinate simplex will be denoted by
Py, - - -, P,, where P; is the point for which

x =1, x; =0, (G=0,---,mj#=1).

The point P, is the intersection that is distinct from P, of the
curve I' and the principal hyperplanef of C and I'; the vertex

P;, (6=1,--- , n—1), is the intersection of the osculating
space S,—; of I' at P, and the osculating space S; of C at P,.
The unit point U(1, - - -, 1) is any point on I' distinct from

the points P,y and P,.
Homogeneous line coordinates p;; of the line joining points
X(xo, +++,x,) and Y(yo, - - -, v,) will be defined by

* See Murray, Curves in Four-Dimensional Space, Chicago master’s dis-
sertation, 1934, and Wilcox, Curves in Five-Dimensional Space, Chicago
master’s dissertation, 1933.

t Berzolari, loc. cit., p. 2. We shall say that P, is an ordinary point of C in
case (1) C is not hyperosculated at P, by any of its linear osculants or by its
osculating rational normal curve T, and (2) C and I" have at P, a principal
plane not contained in their osculating hyperplane at P,. For the definition
of principal plane see Berzolari, loc. cit., p. 18.

1 Berzolari, loc. cit., p. 19.
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Dii = XY — XiYi, (5,7 =0, ,n;i<y).
The coordinates of the line I, joining Pj and P; (k<kE) are
given by
1, when ¢ = hand j = &,
bii = {o, when i % kb or j = k.

In the totality of linear complexes in the ambient space S,
there is a two-parameter family containing all lines /5; except
1o,y L1 n1, and 3 ,. The equation of this family is

(2) )\p0,n + #?l.n—l + VP3,n = 0)

wherein \, u, v are homogeneous parameters. In the family (2)
there is a unique complex having (n-+3)-line contact with the
tangent developable of the curve C at the line /y,;. With the
help of expansions (1) its equation is found to be

(n— 2)(n — 3)po,n — n(n — 3)p1,na
— (n— 2)(n + 3)anpsn = 0.

The locus of all lines of the complex (3) through the point P, is
a hyperplane m whose equation is

(n — 3)xg — (n + 3)axs = 0.

If we demand that the unit point U shall lie in this hyperplane,
we have

(3

n— 3
n4+3’

hence we obtain the following result.

an

An analytic curve C immersed in a linear space of n dimensions
may be represented in a neighborhood of one of its ordinary points
Py by local power series expansions of the form (1), in which
an=m—3)/(n+3). For this canonical form the unit pointis one
of the intersections distinct from P, of the hyperplane m with the
osculating rational normal curve of C at P,.
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