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ON T H E THEORY OF RESIDUES OF 
POLYGENIC FUNCTIONS* 

BY V. C. POOR 

1. Introduction. In polygenic function theory we are interested 
in a sub-class of the class of all functions, such that 

/(*) = /(«, r), 
where £ and f are complex variables; that is, such that when £ 
and f are assigned f(z) is known. The particular sub-class to 
which we restrict ourselves is the class such that f is always the 
conjugate of £, or 

ƒ(*) = ƒ(*, z). 

For a brief outline of this subject and a quite complete bibliog­
raphy one should consult the paper by Hedrickf in this Bulletin. 

I t is the purpose of this paper to generalize the definitions for 
residues of polygenic functions previously given J and to extend 
the theory. Incidentally in the process, the circulation theo­
rems § are generalized ; a theorem on residues of regular functions 
is obtained, while the theory is applied to the large class of func­
tions defined by a Laurent series. 

2. The Definitions for Residues. If we surround the point z = a 
by a circle 0 , center at a and radius r, then the residue Rz of 
f(z) is defined by the equation,|j 

(1) Rz = limit —-. f f(z)dz; 
r-+Q 2wiJo 

while the residue R21 which is of equal importance, is 

* Presented to the Society, December 27, 1933. 
t E . R. Hedrick, Non-analytic functions of a complex variable, this Bulletin, 

vol. 39 (1933), pp. 75-96. 
X V. C. Poor, Residues of polygenic functions, Transactions of this Society, 

vol. 32 (1930), pp. 216-222. 
§ Poor, loc. cit. Calugaréano, (Thesis), Sur les fonctions polygenes d'une 

variable complexe, 1928, p . 11. 
|| Poor, loc. cit., §1. 
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(2) R-z = limit r I f(z)dz; 
r-+o 2iri Jo 

the total residue is then, by definition, 

(3) R = R, + RZ. 

THEOREM 1. In the definitions for the residues of a polygenic 
function, the contour of integration may be replaced by any arbi­
trary contour C, providing in the limit the area bounded by C con­
tracts to the point a. 

In this theorem we are interested in a point a of a domain D 
at which Rz exists. We wish to prove then, when the circle of 
radius r is replaced by an arbitrary contour C, that 

1 r 
limit I f(z)dz 
c->o 2wi J c 

exists and is equal to Rz if C is contracted to the point z = a. 
We surround the point a by two concentric circles, 0\ and 02, 

with centers at a, and with radii r\ and r2, respectively. We also 
enclose a by an arbitrary contour C of length / such that 

2irr2 ^ / ^ 2TJTI, 

with the condition that the contour C lie between the two circles 
and that it contract in the limit to a point. The contour C, then, 
divides the area, a, between the two circles into two annular 
parts, <ri, and Ö*2, adjacent to circles Ox and 02, respectively, so 
that o-i+or2=<7\ 

We make the proof of this theorem depend on the follow­
ing lemma. 

LEMMA. The circulation theorem, 

(4) 2% f ^_da = ff(z)dz, 

is extensible to an annular domain bounded by two closed contours. 

Let C\ be a closed contour lying within the area bounded by 
the closed contour C2. Let C% be a closed contour in the annular 
domain determined by C\ and C2 and not inclosing G. We as­
sume that the circulation theorem (4) is valid for every such 
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contour d in the annular domain. We now join a point P 2 of C2 

with a point Pi of C\ without intersecting the curve C3. We then 
distort the contour C3 till it coincides with G, C2 and the curve 
joining the two points. When we take the flow around this dis­
torted contour, possibly keeping the area to the left, the line 
integrals from P2 to P i and from P\ to P 2 just cancel each other. 
And this evidently establishes the lemma. 

In passing we may mention that this lemma is a simple gen­
eralization of the usual extension of the Cauchy first law. Also 
the circulation theorem 

(4') - 2i \ —da= \ f(z)dz, 
J <r ÔZ J C 

involving the Kasner mean derivative, may be extended in a 
similar way. 

The application of the lemma to the area a between 0\ and 
02 gives 

(5) f f(z)dz - f f(z)dz = 2i f ~day 
J 02 J Ol J <r ÔZ 

where the line integrals are both taken counter-clockwise around 
the point a. But the paths of integration are circles; the line 
integrals in (5) therefore have the same limits. 

Thus 

(6) limit f — da s 0. 
r2-»0 J ff ÔZ 

When we apply the lemma to the areas a2 and <ri, taking the 
line integrals counter-clockwise around a, as before, we may 
write 

(7) f f(z)dz - f f(z)dz = 2i f -^dcT, 
J Oi J c J ff2 dz 
1 j[z)az — I ]\z)az = i% i 

J Ot J C J <r2 

and 

(8) ' ' " ' ' " * ' " ' § J f f(z)dz - f f(z)dz = 2% f -{du. 

If we subtract (8) from (7) we will find that 
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(9) 

f f(z)dz + f f(z)dz - 2 f f(z)dz 

= 2i\ f — d<r - f — do\ 
L J (T2 dz J ffl dz J 

If f(z) is analytic at z = a, df/dz will vanish in the limit, so 
that the right member of (9) becomes zero. The theorem is thus 
verified for this case. Also if f(z) is regular at z — a, then df/dz 
is unique and bounded at z = a. Thus for (Til2, that is, for <T\ or <r2, 
we have, if M is the maximum value of | df/dz\ in 0-1,2, 

f *Us f as 
Jo" ^ -Mö-1,2, 

which goes to zero with ai>2. Thus the right member of (9) is 
zero in the limit and the theorem is again validated. 

lîf(z) is neither analytic nor regular at a, then (6) is satisfied 
by the ultimate cancellation of the elements of the integrand 
or because of the rapidity with which the area a goes to zero. 
I t would appear to be a very special function which would 
satisfy the first condition, while (6) is evidently valid when 

r ! df 
(10) limit — 

For such functions, then, 

d<r = 0 . 

J<r2 dz Jffl dz J J , J dz 
dcr, 

so that in the limit the left member of (9) vanishes. We have 
thus proved the theorem under the restriction imposed by (10). 

As a simple example we might take 1/z+z as ƒ(z) with the 
origin as the point #. Here df/dz= 1, so that 

J — do- = I do- = w(ri - rx
2), 

* dz J, 

which evidently goes to zero with r2. We have 

I f h Adz = 2irf + 27W22, 
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which in the limit is 2iri. Thus, by the theorem, 

limit I ( h z )dz = 2ici, 
c-*o J c \ z / 

and this result can easily be verified. From analytic function 
theory Jc dz/z = 27ri, while if we use r for the maximum value of 
z, we have 

f z d z \ ^ f | z\\dz\ S ri S 2wr£, 

which goes to zero with r%. 

3. Regular Functions. We define a function to be regular in a 
domain D of the complex plane when it possesses a differential 
at every point of the domain. If f(z) has a differential at every 
point z = a of the domain, then 

( l l ) ƒ ( , ) _ / ( « ) s ^ ( 2 _ a ) + ^ (2 _ a ) + , , 

where l imit*.^ = 0. 

THEOREM 2. The residue of every polygenic function regular in 
a domain D is identically zero at every point of the domain. 

In evaluating the integral in (1), we have 

ff(z)dz^ ff(a)dz+ [ [f(z) - f(a)]dz 
Jo Jo Jo 

= f (a) j dz + — I (* - a 
Jo ozJ o 

)dz 

+ — f (z-â)dz+ f 1 
dz J o Jo 

rjdz. 

The first two integrals in this last member vanish identically 
since the integrands are analytic functions, while each of the 
last two integrals contains a factor r1+€, where 0 < € ^ 1 ; thus 
these integrals go to zero with r. Hence ^ = 0. 

In a similar way we can show that Rè is also zero. Hence JR = 0 
a t every point of the domain. 
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4. Functions Defined by a Laurent Series. In this section we 
shall be interested in the residues of a class of polygenic func­
tions defined by a Laurent series. I t will be sufficiently general 
to study the series in the neighborhood of the origin. Thus let 

m n /y , , oo n 

(i2) ƒ(*) - E E -==r + "o + E E ft-*.**-**»; 

we proceed to find the residue Rz of ƒ (z) according to definition 
(1). The contribution to Rz due to the term whose denominator 
is zn~kz~k, (n^l), will contain the factor 

L 
dz 

For z we write z = reid; then z = re"-*'* and dz = nV* d0, so that we 
have 

J dz C2T ireidd0 i f2* 

o zn~kzk J o rnli{n~2k)B rn~l Jo 
since l+2k — n is a positive or negative integer. Similarly the 
contribution to Rz by the term bn-.k,k zn~hzk will contain the 
factor f0z

n~kzkdz. Hence 

/
zn~kzkdz = I irn+hi(n-2k+1)dd = irn+1-0 = 0. 

o Jo 

Since the residue of a0 is zero, the only contribution to R» will 
come from the term involving ai,0 as a factor. Therefore 

01,0 f & 0i,o f2 r 0i,o 
JR* = limit — ; I — = — ; I idB = — : -2r t = 01,0. 

r-»o 2iri Jo z 2iri J o 27ri 

The same procedure will convince one that the only contribu­
tion to JR, will be furnished by the term involving the factor 
a0,i. Then by definition 

— I f a0,xdz m Î0O,I r2r 2iriaQti 
Rg = limit I = limit I dB = 7— = 00,1. 

r-»o 2iri Jo z r->o 2iri J0 2iri 
Hence the total residue at the origin of a function defined by 
a Laurent series is 
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R = Rt + Rz = tfi.o + a0,i-

In conclusion it should be stated that R2 is the negative of 
R defined in the article in the Transactions (loc. cit.) ; this 
change is also carried over into the definition for the total resi­
due. The reason for this change is partly evident in the results 
just obtained; then this change of sign brings R2 into accord 
with the mean derivative and the circulation theorem (40- Also 
a slight change in the proof of Theorem 1 for Rz will establish 
the theorem for Rr 

T H E UNIVERSITY OF MICHIGAN 

NOTE ON A M E R S E N N E NUMBER 

BY R. E. POWERS 

I have recently determined by the computation of Lucas' 
series4, 14, 194, • • • *that the number N = 2241 —1 is composite, 
since the 240th term of the series is congruent to 

- 98 6778335538 8807227981 3604528486 9326522489 7467133466 

0099172867 1619979800 (mod N). 

This term would be zero if N were prime. 
The square of each term was obtained by means of a com­

puting machine, D. N. Lehmer's cross-muUiplication\ being 
used; and these squares, diminished by 2, were divided by N 
by hand, with the aid of a table of the 1000 multiples of N: 
N, 2N, 3N, • • • , lOOOiV, the quotients being thus obtained 
three or more digits at a time, and the computation was checked 
throughout by the four moduli 9, 10 3 +1 , 104 + 1, and 107 + 1. 

D E N V E R , COLORADO 

* This Bulletin, vol. 38 (1932), p . 383. 
t American Mathematical Monthly, vol. 30 (1923), p . 67, and vol. 33 

(1926), p . 199. 


