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ON AN EXPANSION OF THE REMAINDER IN THE
GAUSSIAN QUADRATURE FORMULA*

BY J. V. USPENSKY

1. Introduction. The Gaussian quadrature formula

1
) fo f)ds = Ay f() + Aaf(as) + - - - + Ay f(m),

in which x, %2, - - -, x, are roots of Legendre’s polynomial
drae™(x — 1)
Po(x) = ___S_.____) s
dx
and
! Po(x) .
45 —dx, (1'=1;2"":n))

~Jo (5 — 5)PL (w)

is exact in case f(x) is an arbitrary polynomial of degree not
exceeding 2n—1. Otherwise the formula (1) is only approxi-
mate, and the difference between its left and right hand sides
represents the error or remainder term which will be denoted
in what follows by R,. The expression of this remainder, ob-
tained, if I am not mistaken, for the first time by A. A. Markoff
in 1884, is well known. In this article I shall prove that the re-
mainder in the Gaussian formula can be expanded into a series
possessing all the properties of the classical Euler-Maclaurin
expansion. This is a noteworthy fact, equally important from
the theoretical and from the practical point of view.

2. Expression of R,. In what follows we shall adopt E. Nor-
lund’s definition of the Bernoullian polynomial B,(x) of order #;
and we shall define the periodic function B,(x) by the equations

B.(x) = Ba(x),for0 S x < 1;
B.(x 4+ 1) = B,(x), for all #.

With these notations, we have, for 00=<1,

* Presented to the Society, June 20, 1934.
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( )
/) = f(x)dx +3 e - fen )
g=l
1 Bon(0 —
- @2n)(f)ds.
o (2m)! f (
Taking here § =x4, x, - - -, %, multiplying the resulting equa-
tions by 44, 4, - - -, A,, and adding them, we get
n 1
> Aef(s) = f fa)da
-1
(2) + ?2—57 Z A;Ban () { V(1) — f@=1(0)}
i=1
LN
ABo,(x; — t)dt,
fo 1 &A= 0
since for s=1, 2, , 2n—1,

Zn: A;Bo(x5) = fl B,(x)dx = 0,
0

=1
For brevity, we shall use the notations
—B,(G — 1) — By(0) = F,(9, 1), Z AF (%, £) = Gy(8).
=1

Then equation (2) yields

3) R .= f Gaon (1) 2™ (8)dt.

(2m)!
3. The Function G,(¢). It follows immediately from the defini-
tion of the function G,(¢) that G,(0) =G,(1) =0. Moreover

(4) G2c(1 - t) = GZs(t), G28—-1(1 - t) = = G2a—1(t)'

The proof of these relations essentially depends upon the fact
that the numbers x, %3, * - - , ¥, are symmetrically located with
respect to 1, so that, if these numbers are arranged in increasing
order, ¥,_;;1=1—x; and at the same time 4 ,—;1=4;. We have
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Gyl — 1) = 3 Al Byl + 1) — By}

Sl

= Z An-t’+1{ﬁp(xn—s’+1 +1) — Bp(xn--'-f-l)}

fmm1

n

= 2 AdB,(1 + ¢ — %) — B,(1 — 2} = (— 1)’G,(),

=1

which amounts to the two relations written above.
Similarly,

EAs'B‘.’s—l(x'i) = ZAn—'i+1B28—1<xn—€+1) = E A.'Bas—l(l - xi)

=1 =1 t=1

= - ZAiB2a—l(xt'),

t=1

whence

ZAiBza—l(xe) =0,

=1
so that Gs._1(¢) can be written in the simple form
Ga1(t) = D AiBasa(wi — 1).
d=1
Since

B! (x) = nB,_i(x),

it follows from the last expression for Gs,_;1(¢) that

L) = — 25Gaa(D),

& Gy = 2505 - 0] Guralt + z":lAisg._2<xf>].
Furthermore

(6) Gaep1(t) = 25(25s + 1)Gaun(t).

4. Sign of Gis(¢). Our main purpose is to show that, for s=#,
functions Gas(t) do not change sign in the interval 0 <¢<1. To
this end let 8, and «, represent the number of distinct roots of
the equations Gz, (¢) =0 and G,.—1(£) =0 in the interval 0<¢<1,
respectively. The second of the relations (4) shows that
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G2,1(1/2) =0; hence a, = 1. It follows from the first of the rela-
tions (5) and Rolle’s theorem that B,+1=<a, because Gz,(0)
=Gy, (1) =0. Again, using (6) and applying Rolle’s theorem
twice, we get o,=a,_1, so that, for s=#, B,+1=a, But if
0=<t=<1,wehave

Z AiBgna(%; — 1)

tem]

G2n——1(t)

I

I

iA;Bgn_l(x; — 1)+ 20— 1) D Az — 8)23,

=1 %3St

where the second sum in the right member contains only terms
in which x; <¢. On the other hand, we have

n 1
EA,'B%_],(:XJ,‘ - t) = f an_l(x - t)dx
0

foml

1
= —{Ba(1 — 1) — Bau(— 8)} = — 121,
2n

because Bj.1(x —1) is a polynomial in x of degree 2n—1. It fol-
lows that Gz.—1(¢) differs only by a constant factor from the func-
tion

t2n—1

— 20 Au(w — 1),

-1 z;St

Ro(t) = 3

which represents the remainder in the Gaussian formula applied
to the function defined by the equations

f(x) = (x — £)2»2, ifx <t
flx) = 0, if x> 1.

5. Fundamental Lemma. The equation Ro(t) =0 has one and
only one root in the interval 0 <t <1.

Proor. Let
(_ 1)kt2n—-k—1
Ri(}) = —m oo — Aix'._thz—k—z
x(2) P “Eét ( )
for k=0, 1, 2, - - -, 2n—2. The functions Ro(¥), Ri(¢), - - -,

Rsn_3(t) are evidently continuous, but
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Ryps(t) =t — ZA;
z;<t

is discontinuous at %1, ¥z, - - + , ¥». By the fundamental property
of the Gaussian formula, R;(1) = R;(0) =0. On the other hand,
RI(t)=—02n—k—2)Rr1(t), for k=0,1,2, - - -, 2n—3. Hence,
if N is the number of distinct roots of the equation R,(¢) =0,
we shall have, by Rolle’s theorem, N;+1= Ny, for k=0, 1,
2, -+ +,2n—4. Hence Ngy_3= No+2n—3. But Ny, 3-+1 cannot
exceed the number of variations of sign of Ra,—2(f) when ¢ in-
creases from 0 to 1. Let this number be denoted by Nz,—;. Then
first, No+2%n—2 < N,_s;and, second, Np,_s < 2n—1. For, Rzn_2(f)
can change sign not more than once in each of the »—1 inter-
vals (xi, x:41), (¢=1, 2, - - -, n—1), and also possibly at {=x;,
X, -+ -, %n. Since Ny=a;=1, the inequality No+2n—2=2n—1
shows that Ny=a,=1.

6. Expansion of R,. Since a, =1, the inequality B,+1=a,=1
established for s=#» shows that B,=0, that is, G:(f) does not
change its sign in the interval 0 <t <1,if s=n. After this funda-
mental point has been established, it suffices to use the formula

Gz,” (t) = 28(25 —_ 1)[62,_.20) + ZA.’st_z(xi)],
=1
and to apply repeatedly integration by parts to the integral in
(3) in order to arrive at the following expansion of R,:
k—1

() R.= 2, ca{f(2n+23—l)(1) — f(zn+z.—1)(0)} + cif e (g),

8=0
where

3" ABurran(ed
Cg = — ————— iDopyos\¥s) = — ——————
(2n + 25)1 3 T (n + 25)1
and where £ is an unknown number between 0 and 1. To show
that the expansion (7) possesses all the properties of the Euler-
Maclaurin expansion, it suffices to prove that numbers 7z,
Yant2, Yents, - - - alternate in sign. To this end, we remark first
that

Y 2n+-2s8

1
f Gg,,.}.z,(t)dt = - 72n+2a’
0
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and, second, that the sign of Genye,(¢) in the interval (0, 1) is
the same as the sign of

Gony2:(0) = (21 + 25)(2n + 25 — 1)Yonp2e-a-

Hence Y2nt2:, and vysn42.—2 have opposite signs, which was to be
proved.

The coefficient ¢ is positive. For, since for small values of ¢
the derivative G,/ (¢) is greater than 0, G;,(¢) will be positive for
0<t<1; hence 72, <0 and ¢, >0. Thus in general (—1)%¢,>0.
The expansion (7) is especially useful in numerical applications
when all derivatives of an even order =2# have the same sign
in (0, 1). For then, if we retain a certain number of terms in (7),
the error in R, will in absolute value be less than the first neg-
lected term and will have the same sign as this term.

7. Values of c,.. The simplest way of finding the general ex-
pressions of ¢y, ¢1, ¢, - + + consists in taking in the Gaussian
formula successively f(x) =P,P,, P.Puir2, PuPyts, - - - . Then
Co, C1, Ca, - - - are one by one determined by a set of linear equa-
tions. While this method is theoretically simple, nevertheless
the actual calculation is very laborious. Here are the expres-
sions of ¢y, ¢1, Co:

1-2:3:--n 2 1
C°={(n+1)(n+2) - Zn} n+1)!’
n(4n?+45n—2)
T U D=1 2n+3)
_ m(U120 3840~ 1510~ 18407 — 105076350 —156)
2= 0.

2880(n+1)(n+2)(2n—3) (20— 1)2(2n+3) 21+ 5)

For particular values of # approximate values of the following
coefficients ¢, ¢4, - + - can be found without excessive labor by
another method.
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