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ON AN EXPANSION OF THE REMAINDER IN THE 
GAUSSIAN QUADRATURE FORMULA* 

BY J. V. USPENSKY 

1. Introduction. The Gaussian quadrature formula 

(1) f f(x)dx = Axf(xi) + A2f(x,) + • • • + Anf(xn), 

in which Xi, x2, • • • , xn are roots of Legendre's polynomial 

dnxn(x — l ) n 

Pn(x) = — V T - ^ - » 
dxn 

and 
rl Pn(x) 

Ai = I dx, (i = 1, 2, • • • , w), 

is exact in case f(x) is an arbitrary polynomial of degree not 
exceeding 2n — 1. Otherwise the formula (1) is only approxi­
mate, and the difference between its left and right hand sides 
represents the error or remainder term which will be denoted 
in what follows by Rn> The expression of this remainder, ob­
tained, if I am not mistaken, for the first time by A. A. Markoff 
in 1884, is well known. In this article I shall prove that the re­
mainder in the Gaussian formula can be expanded into a series 
possessing all the properties of the classical Euler-Maclaurin 
expansion. This is a noteworthy fact, equally important from 
the theoretical and from the practical point of view. 

2. Expression of Rn. In what follows we shall adopt E. Nör-
lund's definition of the Bernoullian polynomial Bn(x) of order n; 
and we shall define the periodic function Bn(x) by the equations 

Bn(x) = Bn(x), for 0 ^ x < 1; 

Ttn(x + 1) = Bn(ff), for all x. 

With these notations, we have, for 0 ^ * 0 ^ 1 , 

* Presented to the Society, June 20, 1934. 
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/

•i 2n B (d) 

f(x)dx + £ - i l l {/(.-i)(l) _ /(-D(0)} 
o ,-i si 

C1 Bin(d - t) 

Jo (2n)\ J 

Taking here 6=xu xit • • • , x„, multiplying the resulting equa­
tions by Ai, Aît • • • , An, and adding them, we get 

£ A,f fa) = f f(x)dz 

(2) + — i - t , AJB^Xi) { ƒ * - » ( l ) - / « - " ( O ) } 
( 2 M ) ! <=i 

- x 
1 / ( 2 n ) / A n __ 

(2fi)I t i 

since for ,y = l, 2, • • • , 2« — 1 , 

2 ^ A ( ^ i ) = I B8(x)dx = 0. 
»»i J o 

For brevity, we shall use the notations 

n 

Bp(6 - 0 - 5,(0) = Fp(0, 0 , E 4«Fp(*<, 0 - G9(f). 

Then equation (2) yields 

(3) *«=77T7 f ^ m W / ^ W * . 
(2»)! J o 

3. 77*0 Function Gp(t). I t follows immediately from the defini­
tion of the function Gp{t) tha t Gp(0) = GP(1) = 0 . Moreover 

(4) G2,(l - 0 = G*(0, G*-i(l - 0 = - Gu-i(0. 

The proof of these relations essentially depends upon the fact 
that the numbers xi, x2, • • • , xn are symmetrically located with 
respect to §, so that , if these numbers are arranged in increasing 
order, xn-i+i = !—#»• and at the same time -4n-*+i =-4». We have 



I934-] GAUSSIAN QUADRATURE FORMULA 873 

6p(l - O = TtAilB^Xi + t) - 5P(*,)} 

n 
— 22 -An-i+i{7$p(xn-.i+i + t) — -Bp(ffn_t-+i) } 

» - l 

= S ^ * { 2 , ( 1 + * - xt) - 5 , (1 - *,)} = ( - 1) 'C,(0, 

which amounts to the two relations written above. 
Similarly, 

n n n 

E ^ i ^ - l O » ) = 2^^n-»+1^2«-l(^n-*+l) = ^AiB2s-l(l — X{) 

n 

= — ^AiB2+-i(xi), 

whence 
n 

so that C?2«-i(0 can be written in the simple form 

n 

G28_i(/) = ^2Ai"B28~i(xi — / ) . 

Since 

Bri (x) = nl n_ x(x) , 

it follows from the last expression for G2s~.i(t) that 

G*'(*) = - 2sG2,_iOO, 

GJ'W = 2s(2s - l)fGM(0 + E4<£M(*<)1. 

Furthermore 

(6) GL'+IW = 2s(2s+l)G2s-1(t). 

4. 5 ^ <?ƒG28(t). Our main purpose is to show that, for s^n, 
functions G2s(t) do not change sign in the interval 0 < / < l . To 
this end let /5, and as represent the number of distinct roots of 
the equations G2s(t) = 0 and G2s-\(t) = 0 in the interval 0 < / < l , 
respectively. The second of the relations (4) shows that 
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G28-i(l/2) = 0 ; hence as^ 1. I t follows from the first of the rela­
tions (5) and Rolle's theorem that j3, + l ^ a a , because Gu(0) 
= G2,(1) = 0 . Again, using (6) and applying Rolle's theorem 
twice, we get a8^as-.i, so that, for s^nf P8 + l^an. But if 
O ^ / ^ l , we have 

n 

G2n„i(t) = J^AiBtn^Xi- t) 

* - l 

= èi4<Bï»-i(*< - 0 + (2f» - 1) £ ^<(*< - ')2 n~*, 

where the second sum in the right member contains only terms 
in which Xi S t. On the other hand, we have 

n /» I 

J2AiB2n-l(Xi - t) = I B2n-l(% - t)dx 
< - l ^ 0 

= —{B2n(l - 0 " ^2n ( - *)} = ~ ^ - 1 , 
2w 

because jB2n-i(# —2) is a polynomial in # of degree 2» — 1 . I t fol­
lows that G2n-i(t) differs only by a constant factor from the func­
tion 

In — 1 st.<* 

which represents the remainder in the Gaussian formula applied 
to the function defined by the equations 

f(x) = (x - / ) 2 w - 2 , if x ^ /, 

/(a;) = 0, if a; > /. 

5. Fundamental Lemma. The equation R0(t)=0 has one and 
only one root in the interval 0 < t < 1. 

PROOF. Let 

R^ = V ^ r — r - EM*i - O2-*-2 

for £ = 0, 1, 2, • • • , 2 » - 2 . The functions R0(t), Rx(t), • • • , 
R2n-z(t) are evidently continuous, but 
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is discontinuous at Xi, x2, • • - , xn. By the fundamental property 
of the Gaussian formula, JR*(1) = i?/t(0) = 0 . On the other hand, 
R£ (t) = -(2n-k-2)Rk+i(t)1fork = 0, 1,2, • • • , 2 » - 3 . Hence, 
if iVft is the number of distinct roots of the equation Rk{t) = 0, 
we shall have, by Rolle's theorem, Nk + 1 ^ Nk+i for & = 0, 1, 
2, • • • , 2 » - 4 . Hence iV2w__3èiVo + 2 w - 3 . But JVW-s + l cannot 
exceed the number of variations of sign of jR2n_2(/) when / in­
creases from 0 to 1. Let this number be denoted by iV2n_2. Then 
first, iVo+2^ —2^iV2n-2;and,second,iV2w_2^2w—1. For,jR2w-2(*) 
can change sign not more than once in each of the n — 1 inter­
vals (xi, Xi+i), ( i = l , 2, • • • , » —1), and also possibly at / = #i, 
x2, • • • , xw. Since iV0 = a/bèl , the inequality iVo + 2w —2^2^—1 
shows that N0 = an = 1. 

6. Expansion of Rn. Since «„ = 1, the inequality ft + 1 ^ a n ~ 1 
established for ^ ^ w shows that ft = 0, that is, (?2«(/) döw nö/ 
change its sign in the interval0</<l, if s^w. After this funda­
mental point has been established, it suffices to use the formula 

G*"(/) = 2s{2s - l)fG*_2(0 + JbAiBu-fa)], 

and to apply repeatedly integration by parts to the integral in 
(3) in order to arrive at the following expansion of Rn*> 

(7) Rn = £ *{/<»"+a-»(l) - /<t»+»-i>(o)} + £*/<2»+2*>(£), 
•-o 

where 

(2n + 2s)lti + A (2n+2s)l 

and where £ is an unknown number between 0 and 1. To show 
that the expansion (7) possesses all the properties of the Euler-
Maclaurin expansion, it suffices to prove that numbers Y2n, 
Y2n+2, 72n+4, • - - alternate in sign. To this end, we remark first 
that 

/
G2n+23(t)dt = ~ T2n+2«, 

0 
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and, second, that the sign of Ö2n+2«(0 in the interval (0, 1) is 
the same as the sign of 

Gf2n+2s(0) = (2» + 2s) {In +2s- 1)72»+*-!. 

Hence 72n+28 and 72n+2s-2 have opposite signs, which was to be 
proved. 

The coefficient Co is positive. For, since for small values of / 
the derivative G2n (t) is greater than 0, G2n(t) will be positive for 
0 < / < l ; hence 72* < 0 and c0>0. Thus in general ( —l)sc8>0. 
The expansion (7) is especially useful in numerical applications 
when all derivatives of an even order à 2n have the same sign 
in (0, 1). For then, if we retain a certain number of terms in (7), 
the error in Rn will in absolute value be less than the first neg­
lected term and will have the same sign as this term. 

7. Values of cn. The simplest way of finding the general ex­
pressions of Co, ci, c2, - - • consists in taking in the Gaussian 
formula successively ƒ(x) = PnPn, PnPn+2, PnPn+4, • • • . Then 
Co, C\, c2, - • - are one by one determined by a set of linear equa­
tions. While this method is theoretically simple, nevertheless 
the actual calculation is very laborious. Here are the expres­
sions of c0, ci, c2: 

ƒ 1-2-3 • • • n ï 2 1 
C°~ l ^ + l ) ( ^ + 2 ) ~ - 2n) (2n+l)l' 

n(4:n2+5n-2) 
Cl" 2 4 ( » + l ) ( 2 » - l ) ( 2 » + 3 ) C°' 

n(112nQ+SS4:n5-151n*-1184^3- 105^2+635n-156) 
C2~~ 2S80(n+l)(n+2)(2n--3)(2n--l)\2n+3)(2n+5) *°' 

For particular values of n approximate values of the following 
coefficients c3, c4, • • * can be found without excessive labor by 
another method. 
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