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the forms (10) become 

(ID ÈÈ^i+i)f(c)viVi. 

If 170 = 171= • • • =77n-i = 0, ?7n = l, wesee that 

A(2n)f(c) = 0. 

Since f(x) is continuous by hypothesis, we may apply Lemma 2 
and deduce t ha t / ( x ) is analytic in a<x<b. In (11) replace rji 
by rji/ô and let 5 approach zero. We thus obtain 

and by Lemma 3, the function ƒ(x) has the form (9). This com­
pletes the proof of the theorem. 
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If we are given a ring R we may be called upon to answer the 
following two questions. 

1. Is every element of R uniquely decomposable into prime 
elements? 

2. If not can we introduce ideal elements into R such that 
the resulting system has this property? 

Since these questions can be put in terms involving only the 
operation of multiplication, it is natural to at tempt a solution 
in the same terms. We start, therefore, with a group-like system 
in which multiplication only is defined, namely a class S satis­
fying the following postulates: 

* A statement of definitions and results of a thesis done under Professors 
E. T. Bell and Morgan Ward at the California Institute of Technology. 

(Added in proof.) I find that ovoid ideals were first discovered by I. Arnold, 
Ideale in kommutativen Halbgruppen, Recueil Mathématique, Moscou, vol. 36 
(1929), pp. 401-407, Arnold proves Theorem 4 for regular ova (which he calls 
commutative semi-groups), with a slightly different normal ideal arithmetic. 
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Pi . To every pair of elements a, b of S there corresponds an 
element c of S unique to within equal elements. We write c = ab. 

P 2 . Ifa = a' and b — bf
} then ab — a'b1. 

P3 . a(bc) = {ab)cfor all a, by c in S. 
P4. ab = bafor all a,b in S. 
P 6 . There exists an element i in S such that ia = ai = a for all 

a in S. This element, evidently unique, is called the identity 
element of S. 

Following E. T. Bell, we call such a system an ovum* An 
element a of S is said to divide an element b of 5, written 
a I by if the equation ax = b has a solution x in S. Two elements 
a, b of S are associate, written a~b, if they divide each other. 
Elements associate to the identity i are called unities. Non-
associate elements are called essentially distinct. We say that a is 
a proper divisor of b, written a\\b, if a divides b but b does not 
divide a. An element of 5 having a proper divisor in 5 other than 
i is called reducible; otherwise, irreducible. An element of S is 
called decomposable if it is the product of two proper divisors of 
itself; otherwise, indecomposable. An element of S is called prime 
if the relation p\ ab implies that either p\ a or p\ b, and completely 
prime if the relation pr\ab implies that either pr\a or pr\b, 
for every positive integer r. The index of an element of S is the 
number of essentially distinct powers thereof. If a is of index r, 
then its first r powers a, a2, • • • , ar are essentially distinct, 
and all higher powers are associate to ar. If all the powers are 
essentially distinct, we say that a is of infinite index. 

An element a of S is said to be decomposable into irreducible 
elements if a finite number of essentially distinct irreducibles 
Pij P2, • - - , pr and a unit e exist in 5 such that 

where the a* are positive integers. The decomposition is said 
to be unique if the existence of another, 

, fit 02 fit 
a — e qi q2 • • • qs, 

* E. T. Bell, Unique decomposition, American Mathematical Monthly, vol. 
37 (1930), pp. 400-418. The non-commutative case has been treated by Mor­
gan Ward, Postulates for an abstract arithmetic, Proceedings of the National 
Academy of Sciences, vol. 14 (1928), pp. 907-911. 
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implies that 

(i) r = s, 

and (by suitable numeration) 

(ii) pi ~ Qi, pV ~ qf, (t = 1, 2, • • • , r ) . 

The second of these is equivalent to the statement that either 
«t = /3» or else neither a% nor j8< is less than the index of P». 

An ovum S is said to admit unique decomposition if every 
element of S is uniquely decomposable into irreducible elements 
of S. The ensuing theorem gives an elementary set of criteria 
in answer to question 1. 

THEOREM 1. The following conditions are necessary and suffi­
cient that an ovum S admit unique decomposition : 

I. Teilerkettensatz. If an+i||#n, then the sequence ah a2, • • • 
must terminate. 

II . Every reducible element of S is decomposable. 
III. Every irreducible element of S is completely prime. 
If S is a ring, II can be replaced* by 
IIA. Vielfachenkettensatz. If an\\an+u then either the sequence 

0i, a2, - - - terminates, or no element 7*0 of S is divisible by every 
an. 

Let us denote by xA the class of elements xa as a ranges over 
the class A. A class A of elements of S is called an ovoid ideal 
if it includes all elements 5 of S such that, for every element 
x of S, xs is divisible by all the common divisors of xA in S. 
This is substantially equivalent to a definition given by H. 
Pnifer.f If 5 is a ring, every ovoid ideal is a Dedekind ideal, 
but the converse is not necessarily true. Ideals will be denoted 
by small German letters. An ideal is called a principal ideal if it 
is identical with the set of multiples of a single element of S. 

A common divisor of a class A of elements of S is called a 
greatest common divisor (G.C.D.) thereof if it is divisible by all 

* Thanks to a clever device invented by A. Fraenkel, Über die Teiler der 
Null und die Zerlegung von Ringen, Journal fiir Mathematik, vol. 145 (1915), 
pp. 139-176. 

t H. Priifer, Untersuchungen uber Teilbarkeitseigenschaften in Körpern, 
Journal für Mathematik, vol. 168 (1932), pp. 1-36. 
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other common divisors of A. I t is plainly unique to within asso­
ciate elements. 

THEOREM 2. The condition I II of Theorem 1 can be replaced 
by the condition that every ovoid ideal be a principal ideal. This in 
turn can be replaced by the two conditions : 

IIIA. Every pair a, b of elements of\S has a G.C.D. (a, b) in S. 
I I IB. (a,b)c=(ac,bc) for alia, b, cinS. 

By a regular ovum we mean one in which cancellation is per-
missable, that is, ac — bc always implies a — b. Condition II is 
satisfied for regular ova, and I I IB is a consequence of IIIA, 
leaving only I and IIIA. These conditions are practically those 
given by J. Koenig,* so that Theorem 2 is simply an extension 
of Koenig's elegant result to the irregular case. The sets of 
criteria (I, IIA, III) and (I, IIA, IIIA, IIIB) for general com­
mutative rings involve only multiplication, yet they are not 
applicable to unrestricted ova. 

Most of the theory of Dedekind ideals can be carried over 
bodily to that of ovoid ideals. In particular, in the case of 
regular ova, Krull's form of Noether's conditionsf that the set 
of Dedekind ideals in a ring admit unique decomposition goes 
over unchanged. For the irregular case we find, as in the proof 
of Theorem 4 below, that the following set of conditions is use­
ful. This is simply a corollary of Theorem 2. 

THEOREM 3. The following conditions are necessary and suffi­
cient that the set of ovoid ideals of an ovum S admit unique decom­
position : 

I. Teilerkettensatz: If an+iDan (proper inclusion) then the se­
quence of ideals cti, ct2, • • • of S must terminate. 

I I . a £ c implies the existence of an ideal b of S such that 
ab = c. 

III. Every reducible ideal is decomposable. 

Proceeding now to the second question mentioned at the be­
ginning, we say that an ovum S admits an ovum 2 as an 
ideal arithmetic if 5 is a subovum of 2 and 2 admits unique 

* J. Koenig, Algebraischen Grossen, 1903, Chapters 1 and 4. 
t See B. L. van der Waerden, Moderne Algebra, 1931, vol.2, pp. 97-104. 
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decomposition. An ideal arithmetic 2 of S is said to be normal 
if 

(i) every element of 2 divides some element of S; 
(ii) if a\b relative to 2 , a and b being in S, then a\b relative 

to 5 ; 
(iii) every element of 2 is the G. CD. of its multiples in 5. 

THEOREM 4. If an ovum S admits a normal ideal arithmetic 2 , 
then the set of ovoid ideals in S also constitutes a normal ideal 
arithmetic of S, being in fact simply isomorphic with 2. 

This theorem gives only a partial answer to the question, in 
that it tells us only whether or not a given ovum admits a 
normal ideal arithmetic of any kind. I t does, however, tell us 
that if an ovum (or ring) admits a normal ideal arithmetic, 
including Dedekind ideals and Prüfer's "finite" ideal numbers,* 
then there is essentially only one, which is completely charac­
terized by the three requirements (i), (ii), and (iii). This ex­
tends Prüfer's isomorphism between his finite ideal numbers and 
Dedekind ideals, when these systems admit unique decomposi­
tion, to all possible normal ideal arithmetics.The conditions of 
Theorem 3 are thus criteria for the existence of a normal ideal 
arithmetic of any kind. 

Ovoid ideals bear an important relation to question 1 because 
of the fact that the condition that every ideal be a principal 
ideal is necessary if S is to admit unique decomposition. They 
bear an important relation to question 2 because of the fact 
that they must admit unique decomposition if S is to admit a 
normal ideal arithmetic of any kind. The single (extreme) 
example of the ring of polynomials with integer coefficients 
shows that Dedekind ideals are far from having either of these 
properties. Whatever interesting and useful properties other 
types of ideals may have which ovoid ideals lack, there can be 
no doubt that , for the specific purpose of answering these two 
questions, the ovoid variety are in point of fact ideal. 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

* H. Prüfer, Neue Begründung der algebraischen Zahlentheorie, Mathe­
matische Annalen, vol. 94 (1925), pp. 198-243. 


