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NOTE ON T H E LOCATION OF T H E CRITICAL POINTS 
OF G R E E N E FUNCTION* 

BY J. L. WALSH 

1. Introduction. The Green's function for a multiply connected 
plane region enters into many investigations, so that the nature 
of the equipotential curves, and in particular of their singulari­
ties, is of some importance. The writer's immediate interest in 
the subject, for instance, arises from the study of approximation 
of analytic functions by polynomials; the degree of best approx­
imation and regions of convergence of sequences of polynomials 
of best approximation can be described directly and simply in 
terms of the equipotential curves of a certain Green's function.f 
For an arbitrary plane region the singular points of the equipo­
tential curves are precisely the critical points of the Green's 
function, that is, the points where both first partial derivatives 
of Green's function vanish. 

The results on the location of the critical points of the Green's 
function which we here prove are analogous to and proved by 
the use of certain well known results on the location of the roots 
of the derivative of a polynomial, and are not difficult to estab­
lish. However, they seem not to be known even among those 
versed in potential theory, and are therefore set forth here. 

2. The Green's Function. Let R be a region of the plane, and let 
P : (a, b) be a point of R. The Green's function G(x> y) for R with 
pole at P is the function which is harmonic^ interior to R except 
at P , continuous in the corresponding closed region except at P , 
zero on the boundary of P , and in some neighborhood of P can 
be expressed as U(x, y)— | log [(x — a)2 + (y — &)2], where U(xty) 
is harmonic at P . The Green's function need not exist for an 
arbitrary region, but, if existent, is unique. The Green's function 
for a region is invariant (except for a constant factor) under 
conformai transformation. In particular this invariant property 

* Presented to the Society, June 23, 1933. 
t Walsh and Russell, forthcoming in the Transactions of this Society. 
t A function is harmonic at a point if in some neighborhood of that point it 

is continuous together with its first and second partial derivatives and satisfies 
Laplace's equation. A function is harmonic in a region if it is harmonic at every 
point of that region. A region is an open connected point set. 
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gives a meaning for G(x, y) when P is at infinity. The Green's 
function G(x, y) for an infinite region R with pole P at infin­
ity is harmonic interior to R except at infinity, continuous in 
the corresponding closed region except at P , zero on the bound­
ary of R, and in the neighborhood of P can be expressed in the 
form U(x, y)+i log (x2+y2), where U(x, y) is harmonic at P . 

The Green's function admits the following physical interpre­
tation. Let the boundary B of R (considered of electrically con­
ducting material) be kept at potential zero. The potential at an 
arbitrary point of R due to a unit charge at P and the charge on 
B induced by it is G(x, y). The points of equilibrium in the corre­
sponding field of force are the critical points of G(x, y). The 
induced charge on B is non-positive at all points of B (if this 
physical interpretation is justified and B is smooth), for G(x, y) 
is everywhere positive interior to R, and approaches zero as 
(x, y) approaches B. 

3. Approximation by Lemniscates. Rather than give proofs of 
our results based on the physical interpretation just given, 
which is not difficult (compare the references given below), we 
prefer to give more rigorous proofs based on analytic methods. 

We mean by a lemniscate a locus of the form 

(1) j p(z) | = /x > 0, p{z) = (* - a i ) (* - at) • • • (z - a.). 

A lemniscate thus consists of one or more mutually exterior 
contours, although a finite number of exceptional points may 
belong to several of these contours. The points a& lie interior to 
the contours. By the interior of the lemniscate we mean the in­
teriors of the contours, that is, the points at which we have 
| p(z) | <fjL. If mutually exterior arbitrary Jordan curves 
Ci, C2, • • • , Cv are given, and arbitrarily small annular regions 
containing these curves, then there exists a lemniscate of form (1) 
which contains the Cu in its interior and consists of precisely v 
Jordan curves lying one in each of those regions* 

If R is an arbitrary infinite region whose boundary B is finite, 
there exists a sequence of lemniscates Ln each interior toi ts 

* Proved in the case v = l by Hubert, Göttinger Nachrichten, 1897, pp. 
63-70, and in the general case by Walsh and Russell, loc. cit. Compare also 
Faber, Münchner Berichte, 1922, pp. 157-178, and Pólya and Szegö, Journal 
fiir Mathematik, vol. 165 (1931), pp. 4-49, with the references there given. 
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predecessor, each lying in R> and such that each point of R is 
interior to only a finite number of the Ln. It is then well known 
that the Green's function Gn(x9 y) with pole at infinity for the ex­
terior of Ln approaches uniformly (in any closed region interior 
to R) the Green's function G(x, y) with pole at infinity for R. I t 
is also true, and follows from the method of proof of approxima­
tion by lemniscates, that if R is symmetric with respect to a 
point or line, then the lemniscates Ln can be chosen symmetric 
with respect to that point or line. 

4. Critical Points of the Green's Function. For the exterior: 
\p(z) I >/JLOÎ the lemniscate (1), the Green's function with pole at 

infinity is (I/o*) log|/>(s)//z|, where c i s the degree of p (z), as may 
be verified immediately. The critical points of this function are 
precisely the roots of p'(z), concerning the location of which 
many theorems are known, in terms of the location of the a^ 

Let us now show that for the region R of §3, each critical point 
of G(x, y) in R is the limit of critical points of the Gn(x, y). Let Pi 
be a critical point of G(x, y) interior to R. There exists some 
circle C whose center is Pi containing on or within it no point of 
B. All the points of Ln, for n sufficiently large, lie exterior to C, 
so for n sufficiently large all the functions Gn(x> y) are harmonic 
interior to C. Let Hn(x, y) be the function conjugate to Gn(x, y) 
which vanishes at P i ; then Hn(x, y), if suitably defined, is har­
monic and single-valued on and within C. Let us set Fn{z) 
= Gn(x, y)+iHn(x, y); the sequences dGn/dx, dGn/dy, Hn(x9 y), 
Fn(z)t Fn (z) converge uniformly in an arbitrary circle C' interior 
to C with center at Pi, and these sequences have as their re­
spective limits interior to C the functions dG/dx, dG/dyy H(x, y), 
F(z), F'(z), where H(x, y) is the function conjugate to G(x, y) 
which vanishes at Pi and where we have F(z) = G(x, y) +ifl"(#, y). 
The function F'(z) vanishes at Pi, by hypothesis. Then by a well 
known theorem due to Hurwitz, since F'{z) does not vanish 
identically, the function Pw' (z) vanishes in an arbitrary neigh­
borhood of Pi , for n sufficiently large. Our proof is complete. 

5. Analog of the Gauss-Lucas Theorem. The Gauss-Lucas the­
orem is: If p{z) is an arbitrary polynomial, then all roots of the 
derivative p'{z) lie in the smallest convex region which contains 
the roots of p{z). 
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The analog which we shall prove is as follows. 

THEOREM 1. If Ris an infinite region whose boundary is finite, 
then all the critical points of the Green1 s function {if existent) for R 
with pole at infinity lie in the smallest convex region which contains 
the boundary B of R. 

If all the points of B lie interior to a convex region K, all the 
lemniscates Ln (for n sufficiently large) also lie interior to K. 
All the roots of the polynomials defining those lemniscates lie 
interior to the respective Ln and hence interior to K, so (by the 
Gauss-Lucas theorem) all the critical points of the Gn(x, y) lie 
interior to K and all their limit points lie in the corresponding 
closed region. Theorem 1 follows at once. 

Another statement of Theorem 1, which applies to a more 
general region and more general position of the pole of the 
Green's function, follows directly by an inversion. 

The Green's function for an arbitrary region R with pole at a 
point P has no critical points in any circular region which contains 
the point P but contains no point of the boundary of R. 

By circular region we mean here the interior or exterior of a 
circle, or a half-plane. 

This theorem may give fairly accurate knowledge of the loca­
tion of critical points, when taken in conjunction with other 
known facts, such as that the set of critical points has whatever 
symmetry is possessed by the region R (taken together with P), 
and that the Green's function of a region of connectivity p has no 
more than p —1 distinct critical points. Thus, if R is a doubly 
connected region bounded by two circles C\ and C2, the unique 
critical point of the Green's function G(x, y) for R with pole at P 
lies on the circle C through P orthogonal to C\ and C2. By the 
extension of Theorem 1, this critical point lies on that particular 
arc of C bounded by Ci and C% which does not contain P. 

6. Analog of Jensen's Theorem. The theorem of Jensen is well 
known :* 

Let p{z) be an arbitrary real polynomial (that is, with real coeffi­
cients) and let circles be drawn having as diameters the line seg­
ments joining the conjugate imaginary roots of f(z). Then all the 
non-real roots of the derivative pf{z) lie on or within these circles. 

* Jensen, Acta Mathematica, vol. 36 (1912), p. 190. Walsh, Annals of 
Mathematics, vol. 22 (1920), pp. 128-144. 
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We shall prove the following analog, which also can be readily 
formulated for a more general region and a more general posi­
tion of the pole. 

THEOREM 2. Let G(x, y) be the Green's function with pole at in­
finity for a region R whose boundary B is finite and symmetric in a 
line L. Then all critical points of G{x, y) not on L lie on or within 
the circles whose diameters are segments joining pairs of points of 
B symmetric with respect to L. 

It is to be noticed that these circles (which we shall call Jensen 
circles) are not merely circles whose centers lie on L and which 
contain all points of the boundary of R. It is essential that the 
circles have the segments indicated as diameters. The following 
remark is, however, useful.* 

If the circle x2-\-y2 — r2 has on or within it a number of points 
symmetric in the axis of reals, then the ellipse x2 + 2y2 = 2r2 has on 
or within it all the corresponding Jensen circles with respect to the 
axis of reals. 

In order to prove Theorem 2, it is sufficient to prove that all 
critical points of G(x, y) lie on or within a configuration K found 
by replacing each Jensen circle for B of radius r b y a concentric 
circle whose radius is r + e, and adjoining the region — eSyê-t, 
where e > 0 is arbitrary. Choose the lemniscates Ln symmetric 
in L. For suitably large n, all the Jensen circles for Ln lie interior 
to K. Indeed, a Jensen circle which corresponds to two points 
an and bn of Ln symmetric in L such that \a — an\ <e /2 , 
| b — bn\ <e /2 , where a and b belong to B and are symmetric in 
L, lies interior to K. Theorem 2 now follows by the method 
of §5. The following theorem reduces to Theorem 2 by an in­
version. 

Let G(x, y) be the Green1 s f unction with pole at P for a region R 
whose boundary B is symmetric (anallagmatic) in a circle C which 
passes through P. Then every critical point of G(x, y) not on C lies 
on a circle Q or is separated from P by a circle Q. A circle Q is any 
circle passing through a pair of points of B mutually inverse in C 
and orthogonal to the circle through P and that pair of points. 

We remark, as a complement to Theorem 2 and under the 
hypothesis of that theorem, that any open interval of L exterior 

* The introduction of these ellipses is again due to Jensen (loc. cit.). Formal 
proof of the remark is not difficult. 
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to all the Jensen circles and containing no point of B contains at 
most one critical point of G(xf y) ; any open interval of L exterior 
to all the Jensen circles and containing no point of B but bounded 
by points of B contains precisely one critical point of G(x, y). The 
former remark follows directly from the corresponding fact 
(Walsh, loc. cit.) for the polynomials which define the approxi­
mating lemniscates Ln. The latter remark follows (if L is chosen 
as the axis of reals) from the fact that G(x, y) vanishes at both 
ends of the interval in question, so dG/dx vanishes at some in­
terior point P of the interval ; everywhere in R on L and hence 
at P we have by symmetry dG/dy = 0, so P is a critical point of 
G(x, y). In the two remarks just proved, the critical point of 
G(x, y), if existent, must be simple: | d2G/dx2\ + | d2G/dxdy\ 9e0. 

The following remark, also a complement to Theorem 2, is 
still more general but lies somewhat deeper ; the proof is omitted. 

Let S be a closed segment of L neither of whose end points be­
longs to B or lies interior to a Jensen circle for B. Let J be the con­
figuration consisting of S and the closed interiors of all Jensen 
circles which intersect S. If B consists of a finite number of com­
ponents (mutually exclusive closed point sets whose complements 
are simply connected) and if J contains precisely N of these com­
ponents, then J contains precisely N — 1, N,or N+l critical points 
of G(x, y). If S is the segment xi^x^x^, y = 0, the number of 
critical points of G(x, y) belonging to J is 

N - 1, if dG(xh 0)/dx < 0, dG(x2, 0)/dx > 0; 

N, if [dG(xh 0)/dx]> [dG(x2, 0)/dx] > 0; 

N+l, if dG(xi, 0)/dx > 0, dG(x2, 0)/dx < 0. 

In this remark, account must be taken of the multiplicities 
of the critical points. 

7. Analog of Walsh's Theorem. Another theorem of interest 
on the roots of the derivative of a polynomial is* 

Let the circle C\ : | z — a\ \ =n contain on or within it mx roots of a 
polynomial p(z) and let the circle C%\\z — a^\ —H contain on or 
within it all the remaining roots, m2 in number, of p{z) ; it is imma­
terial whether C\ and C2 contain roots of p(z) other than those speci­
fied. Then all roots of p\z) lie on or within C\, C2, and the circle 

* Walsh, Transactions of this Society, vol. 22 (1921), pp. 101-116; Comptes 
Rendus du Congrès des Mathématiciens (Strasbourg 1920), pp. 349-352. 
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C: Z — 
nti + m2 

ntiT2 + m2r i 

m.i + m2 

/ƒ tóese circles are mutually exterior, they contain, respectively, 
mi — 1 , m2 — 1, 1 rtf0/s of p'{z). 

We shall first be concerned with the following special case. 
Let p{z) be a real polynomial whose roots lie on or within two 

circles C\\\Z — OL\ —r and C2\ \z — â\ =r. Then all roots of pr{z) 
lie on or within C\, C2, and C: \z — {a-\-â)/l\ —r. If we have 
\oL — â\ ^4 r , then one root of p'(z) is real {it lies on the projection 
of C\ on the axis of reals) and the other roots lie on or within C\ 
and C2. 

As a matter of fact, the first part of this theorem does not 
follow immediately from the preceding one, for the real poly­
nomial p{z) may have an odd number of real roots, so that we 
cannot set Wi = W2. In that case it is sufficient to apply the for­
mer theorem to the polynomial |i>0&)]2. 

The following theorem is the precise analog for critical 
points of the Green's function; the proof is similar to those 
already given and hence is omitted. 

THEOREM 3. Let R be an infinite region of the plane whose 
boundary B is finite and symmetric in the axis of reals, and letG{x, y) 
be the Green's function for R with pole at infinity. If all points 
of B lie on or within the circles C\\ \z — a\ =r and C2: | z — â\ =r, 
then all critical points of G{x, y) lie on or within C\, C2, and 
C\\z—{aJra)/2\ = r . If we have \a — â\ ^4 r , then one critical 
point of G{x, y) is real {it lies on the projection of C\ on the axis of 
reals) and the others lie on or within C\ and C%. 

8. Extensions. Even if the Green's function G{x, y) for a given 
region R does not exist, it may occur that the functions Gn{x, y) 
defined in §3 (the sequence Gn{x, y) is monotonie increasing) 
approach a limit G{x, y) in R not the infinite constant. This new 
function G{x, y) is then called the generalized Green's function 
for JR; it is independent of the particular choice of the lemnis-
cates Ln. Theorems 1, 2, and 3, and their proofs, are clearly 
valid for this generalized Green's function. 

Still other applications of the theorems we have mentioned 
exist. For instance the following theorems can be proved by the 
method of §7. 
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Let the roots of the polynomial p(z) be symmetric in the origin 
and lie on or within the two circles Ci\\z — a\ =r and C2: 
| s + a | = r. Then all roots of pf(z) lie on or within G, C?, and 
C: \z\ = r. If we have \a\ ^2r, then one root of p'(z) lies at the 
origin and the other roots lie on or within Ci and C2. 

Let Rbe an infinite region whose boundary B is finite and sym­
metric in the origin, and let G(x, 3;) be the Green's function for R 
with pole at infinity. If all points of B lie on or within the circles 
C\ : I z — a I = r and C2 : | z+a | = r, then all critical points of G{x, y) 
lie on or within Ci, C%, and C:\z\ = r. If we have \a\ ^2 r , then 
one critical point of G(x, y) lies at the origin and the others lie on 
or within C\ and C2. 

Many other theorems on the roots of the derivative of a poly­
nomial can also be applied in the present situation. Let us state 
one further application.* 

Let R be an infinite region with finite boundary B and let B have 
three-fold symmetry about the origin {that is, let B be unchanged by 
a rotation of 120° about the origin). Let all points of B lie on or 
within the three circles \ z —œh\ ^r, where œ is a cube root of unity. 
Then all critical points (exterior to these three circles) of the Green's 

function for R with pole at infinity lie on or within the circle 
\z\ ^(r2 + hr)1/2. In particular if we have h^3r, then all these 
critical points (except for a double critical point at the origin) lie 
on or within the three circles \z—o)h\ ^r. 

In the present note we have used results on the location of the 
roots of the derivative of a polynomial to establish results on the 
location of the critical points of the Green's function. The re­
ciprocal process is also possible, for if a polynomial p(z) is given 
and if J U > 0 is chosen sufficiently small, the various branches of 
the lemniscate \p(z) \ =;u lie near the roots of p(z), and the roots 
of the derivative p'(z) are the critical points of the Green's 
function for the exterior of this lemniscate. 

HARVARD UNIVERSITY 

* See Walsh, Proceedings of the National Academy of Sciences, vol. 8 
(1922), pp. 139-141. 


